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Abstract 
Monte Carlo simulations were utilized to give structural and thermodynamic insight into aqueous heavy metal ion systems. Van der Waals 
forces were addressed using a Lennard-Jones 12-6 potential and Coulombic forces were accounted for using Wolf’s method as an alter-
native to Ewald Summation techniques.  This novel approach for charged systems allowed for computationally efficient assessment of 
solvation energies, coordination numbers, and radial distribution functions.  It was found that this process was successful in calculating the 
structural and energetic properties of the Pb2+ (aq) system, but was less successful when applied to Cd2+ (aq) and Zn2+ (aq).  
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Introduction

Aqueous metal ions have critical biological functions as co-
factors for enzymes. For example, Zn2+ is a cofactor for carbonic 
anhydrase which plays a critical role in oxygen transport.1 How-
ever, in high concentrations, metal ions can be toxic and become 
dangerous pollutants.2 Zinc, cadmium, and lead can all lead to 
significant health problems such as cancer and organ damage.2 
Evaluating the role of metal cofactors or determining methods for 
removing water pollutants first requires an in depth understanding 
of their behaviors in aqueous systems.

Simulations can be utilized to determine key properties of 
aqueous metal ions such as hydration energy and coordination 
number. Elucidation of thermodynamic and structural information 
could be applied to the understanding of biological systems or pol-
lution management. In this study, the hydration of Cd2+, Pb2+, and 
Zn2+ was analyzed through a classical NVT simulation.  Previous 
studies of these systems have utilized molecular dynamics (MD) 
techniques.1,3 While MD simulations are effective, they can also be 
computationally expensive when dealing with a system containing 
large numbers of molecules. Monte Carlo integration offers a more 
computationally efficient method because its computational cost 
does not increase as rapidly as the number of particles in a sys-
tem increases.4 Increased computational efficiency thus opens the 
possibility of exploring such systems in undergraduate research 
settings. In this work, the energetics and solvation structure of hy-
drated metal ion systems were evaluated using a classical Monte 
Carlo process.

Traditionally, the calculation of interaction potential energies 
(a necessary step in any classical simulation) becomes a main 
hurdle with respect to computational efficiency. While a simple 
function such as a Lennard-Jones 12-6 potential can account for 
short-ranged Van der Waals interactions, accounting for electro-
static interactions in the form of Coulombic potentials becomes 
problematic due to their relative long range of influence. The 
standard method for dealing with long range interactions in sys-
tems with charges is called Ewald Summation. However, Ewald 
Summation requires using replicate systems and rapidly increases 
computational cost for larger simulations.5 Wolf’s Method, which 
scales linearly with system size, offers a more computationally ef-

ficient alternative.5-7 In Wolf’s Method, a radial cutoff is applied to 
the system and a dampening function is introduced.6 This allows 
for interactions beyond the cutoff to be accounted for by the damp-
ening of short range interactions.5-7 While this method has been 
applied to homogeneous systems5-9, very little work has been done 
applying Wolf’s method to heterogeneous systems.10 In this work, 
Wolf’s method was applied to determine solvation energies and ra-
dial distribution functions of Zn2+, Cd2+, and Pb2+ aqueous systems. 
 
Methodology

All simulations were carried out with an in-house code written 
in FORTRAN.  A temperature of 25 oC was chosen, along with a 
density of 0.03343 molecules/Å3 to be able to compare our results 
with previous work. A rigid SPC/E model was utilized to represent 
pure water.11 The SPC/E model represents the atoms of a water 
molecule as an extended simple point charge.11 SPC/E param-
eters are shown in Table 1.  The water molecules were allowed 
to undergo rotations and translations but the bond distances and 
angles remained fixed to redue computational time. For each wa-
ter molecule, 100000 Monte Carlo steps were taken resulting in 
a standard deviation of approximately 0.01 kcal/mol. The SPC/E 
model yields results that closely match experimental results with-
out compromising computational efficiency. Metal ions were treat-
ed as fixed point charges at the origin with total charges of +2e.  
All simulations utilized periodic boundary conditions with a box 
length of 24.64 Å.  

For each system studied, a classical simulation was enacted 
with average potential energies calculated via

                                                                                                  [1]

where           is the total interaction potential energy,     represents 
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Simulation Parameters 

Water Molecules 500 
𝑟𝑟" (Å) 10.00 

α Water (Å-1) 0.3200 
α Metal (Å-1) 0.2200 
𝑞𝑞 Oxygen (e)11 -0.8476 
𝑞𝑞 Hydrogen (e)11 0.4238 

Water O-H Bond Length (Å)11 1.000 
Water Bond Angle (deg)11 109.47 

 
 

 

                                                 													⟨𝑉𝑉⟩ = ∫'(⃗*((⃗)-./0(122⃗ )

∫ '(⃗-./0(122⃗ )
                                                  

Table 1. Table of Simulation and SPC/E Parameters
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the collection of spatial coordinates of all particles within the sys-
tem, and b is equal to the inverse of the product of the Boltzmann 
constant times the temperature in Kelvin.  In order to establish 
a computationally efficient method, a Monte Carlo process was 
enacted to evaluate [1] by taking the total integrand and splitting 
it into a sampling function and a Monte Carlo integrand:4 the sam-
pling function was chosen to be 	𝑒𝑒#$%('⃗)  (normalized by the inte-
gral 	 " 𝑑𝑑𝑟𝑟𝑒𝑒'()(+⃗)  found in the denominator of [1]) and the Monte 
Carlo integrand was thus 

 

𝑉𝑉(𝑟𝑟) . In Monte Carlo integration, the 
sampling function acts as a probability distribution and thus di-
rects the importance of differing random configurations within a 
simulation.  In our work, a Metropolis random walk was enacted 
with the choice of sampling function indicated above, and thus 
configurational changes were accepted or rejected based on the 
effects of the subsequent total potential energies on the function 
	𝑒𝑒#$%('⃗) .  

The total interaction potential was calculated as a sum of Van 
der Waals and electrostatic interactions. A Lennard-Jones 12-6 po-
tential (parameters in Table 2) was used to evaluate Van der Waals 
interactions. The Lennard-Jones 12-6 potential takes the form 

[2]

where 𝑉𝑉"#$%&  represents the Van der Waals interaction potential 
energy between two atoms, eij and  sij are related to the potential 
well minimum and the zero-potential distance, respectively, and  
rij represents the distance between the particles. Particles also in-
teract electrostatically via 

							𝑉𝑉#$%&'(𝑟𝑟#$* =
𝑞𝑞#𝑞𝑞$
𝑟𝑟𝑖𝑖𝑖𝑖

,					                     [3]

where 𝑉𝑉"#$%&(𝑟𝑟)  represents the coulombic interaction potential be-
tween atoms i and j, and q represents the charge of each particle. 
An issue arises with the direct use of [3] in molecular simulations 
as the relatively weak 1/r decay requires a prohibitive number of 
long-range interactions to be accessed to get an accurate value for 
potential interactions.  In order to calculate said long range inter-
actions while maintaining computational efficiency, other meth-
ods are thus required. In this study, Wolf’s Method was utilized as 
an alternative to the more standard Ewald Summation techniques 
used to address this issue. Wolf’s Method approximates the effects 
of long range interactions by using a cutoff radius and a damped 
shifted potential function for interactions inside of the cutoff ra-
dius.7 This allows for contributions of long range interactions be-
yond the cutoff to be estimated by dampening interactions within 
the cutoff. By utilizing the damp shifted force application of this 
method,6 the total interaction potential can be calculated through 
the use of a single analytical function that sums Van der Waals 
contributions and the modified electrostatic potential interacts as
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where a  represents the dampening parameter of the potential 
function, rc represents a chosen cutoff radius, and erfc is the com-
plimentary error function. Simulations thus proceed by choosing 
a rc, and then converging the calculation of total average potential 
energy through optimization of a.6-10 It should be noted that [4] 
represents one version of Wolf’s method that neglects self and long 
range terms.5,6,8 In previous work by Waibel et al. and Fanourgakis 
et al, contributions from the self-term 

[5]

and long range term 
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were found to be approximately zero for the homogenous sys-
tems.6,8 To keep the functional form of the potential as simple as 
possible, our simulations did not include contributions [5] and [6], 
and thus our work acts as grounds to see if such terms play a more 
critical role in the aqueous metal ion systems of interest; if our 
results differ greatly from previously established values, the pos-
sibility of [5] and [6] being important under our simulation condi-
tions becomes a point of interest.  

 To determine solvation energies, the potential energy for each 
aqueous metal ion system was subtracted from the potential energy 
of water,12,13 

 

as the only difference between the simulations leading to the val-
ues on the right hand side of [7]  is the presence of a metal ion 
in <Vionic>.  In the equation above,  <Vsol>represents the potential 
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Table 2. Lennard Jones Parameters for Metal Ion to Oxygen Interactions

Figure 1. Radial distribution function for a system of pure water (500 water, rC = 
10 Å, α = 0.32 Å -1). This indicates the probability of finding relative oxygen-oxygen 
distances within the water system. 
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Interaction σ (Å) ε (kcal/mol) 
O-O11 3.166 0.1500 
O-Zn1 1.950 0.2500 
O-Cd3 2.700 0.0060 
O-Pb3 3.000 0.1912 
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energy of  ion solvation, <Vionic> represents the potential energy of 
the ionic system, and  <Vwaterl>represents the potential energy of 
pure water, each of which is calculated using [1] with potential [4]. 

During the simulations, metal to oxygen radial distribu-
tion functions were also produced to observe the structure of the 
system. Radial distribution functions (represented as g(r) in this 
work) give structural information by showing probable distances 
between particles relative to a completely random ideal gas.  Max-
ima thus represent repeated/likely distances within a simulation, 
where values near 1 indicate a lack of order.  Coordination num-
bers can also be calculated from  g(r) via

where  Nc is the coordination number, and ρ is the number density 
of the system.14 In this work the coordination number for each met-
al ion was thus calculated by choosing limits a and b to capture the 
first coordination peak in the radial distribution function.

Results and Discussion
 

The process described above was first applied and optimized 
for a system of pure water. A cutoff radius was chosen, and ac-
curate total potential energies (relative to previous simulations15) 
were produced through parameterization of α. To confirm struc-
tural integrity, the radial distribution function for water (Figure 1) 
was analyzed and shown to match literature forms as well, with 
similar first and second peak locations and magnitudes (Table 3).11 

A separate parameterization of α was undertaken for metal 
systems as the net charge of the system was no longer neutral. It 
was found that an α of 0.22 Å-1 yielded the best results for all three 
ionic systems. The Pb2+ (aq) simulation yielded the closest solva-
tion energy to accepted values with only a 2.14% difference, while 

Zn2+ (aq) and Cd2+ (aq) simulations yielded solvation energies that 
differed more significantly from literature (Table 4). Please note, 
the only experimental solvation energy for Zn2+ was not available 
therefore no literature comparison could be made.17

In an analysis of the radial distribution function results for the 
hydrated ion systems, our simulation for Pb2+ (aq) again matched 
well with those found using MD methods in terms of peak posi-
tions and heights.3 However, the radial distribution functions of 
Zn2+ (aq) and Cd2+ (aq) did not match previous work and showed 
a first peak position that was far too close to the ion (Figure 2). 1,3  
Radial distribution functions were used to calculate coordination 
numbers via equation [8], resulting in coordination numbers that 
were too low relative to established procedures (Table 5).  All three 
metals were found to have 6 waters within their first coordination 
sphere with octahedral geometries in literature (Table 5).1,3 Our 
results indicate coordination numbers that were lower than those 
in the literature for Zn2+ and Cd2+ systems, while the coordination 
number for Pb2+ was found to be 9.0 (which is higher than expect-
ed). While Pb2+ was found to have a higher first sphere coordina-
tion numbers in some studies,16 the simulation resulting in tetrahe-
dral geometries for Cd2+ and Zn2+ indicates incomplete accounting 
of interactions. This may suggest that the terms shown in [5] and 
[6] cannot be neglected for ionic systems.   

Conclusions

Utilizing Wolf’s method in conjunction with a Monte Carlo 
integration technique proved to provide a computationally efficient 
process that could accurately reproduce the energetics and struc-
tural information for a system of pure water and aqueous Pb2+ (aq). 
The validity of Wolf’s method for homogeneous systems has been 
previously established,5-8 however during this study the energetic 
and structural results for heterogeneous aqueous systems provided 
mixed results. The solvation energy and radial distribution func-
tion for Pb2+ (aq) matched established literature values, but Zn2+ 
(aq) and Cd2+ (aq) simulations led to solvation energies that were 
too negative and metal to oxygen distances that were shorter than 
those found in previous work.1,3,16-17 While the version of Wolf’s 
method that was utilized provided a computationally efficient way 
to deal with long range electrostatic interactions, the inconsistent 

Table 3. Water Radial Distribution Function Peak Locations and Coordination 
Numbers versus Literature Values

System Coordination 
Number 

1st Peak 
Position (Å) 

1st Peak 
Maximum 

2nd Peak 
Position (Å) 

2nd Peak 
Maximum 

H2O 5.2 2.76 2.85 4.55 1.05 
Lit. H2O3 4.7 2.87 3.09 4.48 1.14 

*Literature solvation energy was from a 6 water cluster and not a fully aqueous system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Calculated Solvation Energies of Aqueous Systems versus Literature 
Results.

Figure 2. Radial distribution functions for Zn-O (red), Cd-O (blue) and Pb-O 
(green). The first and second peaks for each function infer the first and second 
coordination sphere positions.

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Peak Locations Magnitudes, and First Shell Coordination Numbers for 
Metal-Oxygen Radial Distribution Functions versus Literature Values

System Coordination 
Number 

1st Peak 
Position (Å) 

1st Peak 
Maximum 

2nd Peak 
Position (Å) 

2nd Peak 
Maximum 

Zn2+(aq) 4.0 1.62 36.90 3.02 2.18 
Lit. Zn2+(aq)1 6.0 2.12 19.10 4.10 1.95 

Cd2+(aq) 4.0 1.65 33.88 3.02 1.90 
Lit. Cd2+(aq)3 6.0 2.08 23.75 4.24 2.10 

Pb2+(aq) 9.0 2.54 14.48 4.70 2.23 
Lit. Pb2+ (aq)3 6.0 2.56 12.96 4.79 1.95 

 

 

𝑁𝑁! = 4𝜋𝜋𝜋𝜋 𝑔𝑔 𝑟𝑟 𝑟𝑟!𝑑𝑑𝑑𝑑!
! ,   [8] 

 

 

 

 

System 
Potential 
Energy 

(kcal/mol) 

Solvation 
Energy 

(kcal/mol) 

Literature 
Solvation Energy 

(kcal/mol)14,15 

% Difference 
 

H2O -4947.7 - - - 
Zn2+(aq) -5465.9 -518.2 - - 
Cd2+(aq) -5451.8 -507.0 -436.9 14.86% 
Pb2+(aq) -5314.4 -366.8 -359.0 2.15% 
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4648. 
15) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. 

Chem., 1987, 91, 6269–6271.
16) Johnson, K. J.; Cygan, R. T.; Fein, J. B. Geochim. Cosmochim. 

Acta, 2006, 70, 5075–5088. 
17) Parchment, O. G.; Vincent, M. A.; Hillier, I. H. J. Phys. Chem., 

1996, 100, 9689–9693. 
18) León-Pimentel, C. I.; Martínez-Jiménez, M.; Saint-Martin, H. 

J. Phys. Chem. B, 2019, 123, 9155–9166.
19) Rahbari, A.; Hens, R.; Jamali, S. H.; Ramdin, M.; Dubbeldam, 

D.; Vlugt, T. J. H. Mol. Simul. 2019, 45, 336–350. 
20) Li, P.; Song, L. F.; Merz, K. M. J. Phys. Chem. B, 2015, 119, 

883–895. 
21) Yuet, P. K.; Blankschtein, D. J. Phys. Chem. B 2010, 114 (43), 

13786–13795. 

results prompt an analysis of all aspects of the simulation.  Devia-
tions could have been caused in part by the neglection of the afore-
mentioned long ranged and self-terms ([5] and [6]).6,8 While it was 
determined that these terms had approximately zero contribution 
to the energetics of a homogenous system, it is possible that the 
introduction of higher charges (in the form of the divalent cations) 
makes the long range or self-terms significant and thus non-negli-
gible. In a recent study by Rahbari et al., the DSF form of Wolf’s 
method was utilized in order to evaluate potential interactions 
within a heterogeneous mixture of water and ethanol.19 While this 
was not a charged system, additional modifications were required 
to accurately evaluate the mixture.19

Future work will be aimed at continuing to address the va-
lidity of the usage of Wolf’s Method within aqueous systems. 
Simulations could be carried out with [5] and [6] included in the 
calculation of total potential energy.  Additionally, the use of a 
Lennard-Jones 12-6 potential has been suggested to be inadequate 
for highly charged systems.20 To possibly produce more accurate 
interactions, potential functions such as the Lennard-Jones 12-6-4 
could be adopted.20 Further, the rigidity of water in our simulations 
could be lifted, as it has been indicated that a flexible water mol-
ecule may be better for modeling solvation of ions.21 If success-
ful, other aqueous systems could be studied again with the goal of 
providing computational efficiency with minimal complexity, and 
thus allowing for such interesting and relevant work to be carried 
out in an undergraduate setting.  
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