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Abstract
The complexity of Alzheimer’s disease requires therapeutic treatments that counteract multiple processes. Symptoms and causes include 
formation of senile plaques, agglomeration of neurofibrillary tangles, disruption of cholinergic activity, and oxidative stress. Enzymes 
that promote these pathways include BACE1, GSK-3β, CDK-5, AChE, BuChE, MAO-A, and MAO-B. Virtual screening of the InterBioScreen 
and Zinc 15 databases was conducted using the Schrödinger 2019 Phase program to identify potential inhibitors of these enzymes. In-
terBioScreen compounds 1N-05528, and 1N-72595, and Zinc 15 compounds ZINC314161, ZINC5854353, ZINC15674654, ZINC49170543, 
ZINC96112244, and ZINC604382088 all showed exergonic binding within the active sites of at least five AD enzymes. These compounds were 
docked individually with standard precision (SP) and compared with known inhibitors—the docking locations and scores were comparable 
with those of known inhibitors. ADME blood brain permeability evaluations with QPlogBB and QPMDCK showed that the compounds should 
not be blocked by the blood brain barrier.
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Background

     Alzheimer’s  disease  (AD) is  a neurodegenerative disease that 
affects 10% of people over the age of 65 and almost 50% over 85 
(1, 2). AD is the leading cause of dementia and the sixth leading 
cause of death in the United States (3). The anticipated increasing 
numbers of AD cases requires more effective therapies than are 
currently available. Although several attempts have been made to 
explain the onset of the disease, its cause is still unclear (4, 5). 

Amyloid Cascade Hypothesis

     According to the amyloid cascade hypothesis, the formation of 
senile plaques is the cause of AD (6). These aggregates of β-amy-
loid (Aβ) protein are formed on the outside of neurons of the brain, 
when amyloid precursor proteins (APPs) are hydrolyzed by secre-
tases (7). Since 1992, one of the goals of AD research has been the 
inhibition of β-secretase, BACE1 (1, 8).

     BACE1 can be inhibited at the active site where catalytic cleav-
age of substrate APP occurs. Binding of substrates or inhibitors at 
the active site causes a “flap” consisting of residues 69-75 to cov-
er the site in a closed conformation or semi-closed conformation 
(9, 10). Thus, “Compound A” (Figure 1) is bound to the closed 
conformation of BACE1 in the Protein Data Bank (PDB) struc-
ture 2P4J. Compound A gave a Ki value of 1.1 nM for inhibition 
of BACE1 (11). Ki is a measure of binding affinity, i.e., the con-
centration of an inhibitor for which the inhibitory reaction rate is 
half its maximal rate. Values in the low nM range indicate very 
strong binding. It also showed an IC50 value of 39 nM according to 
a cellular inhibition assay. IC50 values measure the concentration 
of inhibitor required to reduce the rate of a biological process by 
half. The semi-closed conformation of BACE1 is complexed with 
“compound B” in the PDB structure 4H3G. Compound B (Figure 
1) has shown a Ki value of 6 nM and an IC50 value of 48 nM (12). 
These downloaded PDB structure files were used in the present 
work, to screen databases and to determine which screened com-
pounds would bind to BACE1 in silico in a similar manner.

Tau Hypothesis

According to the tau hypothesis, AD is caused by tau protein 
that normally stabilizes microtubules and promotes self-assembly 
(13). Neurofibrillary tangles (NFTs) are formed through aggrega-
tion of tau protein caused by folding and insolubility due to hy-
perphosphorylation which changes the charges and conformations 
of the proteins (3, 14, 15). Two kinases that contribute to hyper-
phosphorylation are glycogen synthase kinase-3β (GSK-3β) and 
cyclin-dependent kinase-5 (CDK-5). Inhibitors of GSK-3β, such 
as AR-A014418 (Figure 1) bind to the ATP binding site and pre-
vent phosphorylation of tau (16, 17). AR-A014418 showed an IC50 
value of 104 nM with values for other CDKs above 100 µM (18). 

 

 
 

 
 

 
 
 

 
 
 

Figure 1. Known Inhibitors of AD Enzymes. 
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Figure 1. Known Inhibitors of AD Enzymes.
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(R)-roscovitine is a CDK-1, CDK-2, and CDK-5 inhibitor that has 
been shown to inhibit CDK-5 with an IC50 value of 0.2 µM (20). 
In the present work, the PDB files of AR-A014418 and roscovitine 
bound to GSK-3β (1Q5K) and CDK-5 (1UNL), respectively, were 
used for ligand screening.

Cholinergic Hypothesis

The cholinergic hypothesis states that the cognitive decline of 
AD patients is due to abnormal function of cholinergic neurons, 
i.e., those that use the neurotransmitter, acetylcholine (ACh). AD 
patients experience a decline in both ACh receptor types (musca-
rinic and nicotinic) leading to decreased cholinergic activity (21). 
Inhibition of enzymes that are responsible for the breakdown of 
ACh, i.e., acetylcholinesterase (AChE) and butyrylcholinesterase 
(BuChE), may prevent decreases in cognitive function (3). AChE 
has greater specificity for ACh, while BuChE also hydrolyzes adi-
poylcholine, succinylcholine, and benzoylcholine (22-24).

     Four AChE inhibitor drugs are approved by the FDA for the 
treatment of AD: donepezil (Aricept®), rivastigmine (Exelon®), 
galantamine (Razadyne®), and memantine (Namenda®). All four 
reduce but do not halt cognitive decline symptoms (25). Donepezil 
and rivastigmine (Figure 1) have shown IC50 values for AChE of 
6.7 nM and 4.3 nM, respectively. Rivastigmine also inhibits Bu-
ChE with an IC50 of 31 nM (26). In this work, the donepezil-AChE 
complex (4EY7) was used for screening of potential new ligands. 
The inhibitory properties of rivastigmine led us to carry out our 
own docking of that drug to human BuChE (2PM8), as a crystallo-
graphic analysis is not available for that complex.

Oxidative Stress Hypothesis

    According to the oxidative stress hypothesis, AD is caused 
by reactive oxygen species (ROS) that cause destruction of 
cholinergic neurons and formation of senile plaques. Reactive 
oxygen radicals can cause oxidation of RNA, DNA, proteins, 
and lipids (27). Monoamine oxidases (MAOs) catalyze primary 
amine deamination of major neurotransmitters and produce H2O2, 
promoting oxidative stress. MAO inhibitors improve cognitive 
function by relieving oxidative stress and neuroinflammation, 

and regulating neurotransmitters (28). In the present work, the 
PDB files of MAO-A with harmine (2Z5X) and MAO-B with 
safinamide (2V5Z) were used for database screening. Harmine 
(Figure 1) has shown an IC50 value of 2-5 nM for MAO-A (29). 
Safinamide (Xadago®, Figure 1), an FDA-approved therapy for 
Parkinson’s Disease, is a selective inhibitor of MAO-B with an 
IC50 value of 0.098 µM (30, 31). 

Computational Strategies

    One goal of the present work was to promote computation-
al screening methods that might identify drug candidates for the 
treatment of AD. This would decrease the number, the time re-
quired, and the costs of unsuccessful drugs reaching and going 
through clinical trials (32). 

     Schrödinger’s  Phase program was used with the e-pharma-
cophore method to generate a hypothesis for potential ligands of 
each AD enzyme. A hypothesis is a 3-D group of molecular sites 
of a ligand that are deemed to be essential for favorable binding to 
that receptor. The sites are those that contribute to intermolecular 
attractions, such as lipophilic (London), hydrogen bonding, cou-
lombic, polar and the like.

     In  a combined ligand-based virtual screening (LBVS) and 
structure-based virtual screening (SBVS) approach, the important 
binding sites for each enzyme are determined by optimizing the 
enzyme-known inhibitor PDB complex structure. Glide XP scor-
ing evaluates which binding sites and interactions are the most 
important. Excluded volumes (regions of the pharmacophore that 
should not contain atoms) are defined. Further modifications can 
be made to the hypothesis: representation of hydrogen bonds as 
projected points instead of vectors relaxes the strictness of direc-
tionality of hydrogen bonding and permits a greater number of ac-
ceptable options in possible matches; feature matching tolerances, 
which are limits on distance ranges that the ligand features must 
be within to match the hypothesis, are selected. The hypothesis is 
used to screen databases for compounds with similar types and 
orientations of pharmacophore sites.

    Database screening requires preparation: skipping ligand 

Figure 2. Secretases with Docked Known Inhibitors. Left: BACE1 (closed con-
formation, from 2P4J) with “Compound A;”; right: BACE1 semi-closed conforma-
tion (from 4H3G) with “Compound B.”. Red structures: inhibitor pose in download-
ed file; green-carbon structures: inhibitor docked after removal from complex and 
optimization of ligand-free protein. 

Compound A Compound B AR-A014418 Roscovitine

Figure 3. Kinases GSK-3_ and CDK-5 with Docked Known Inhibitors 
Left: GSK-3_ (from 1Q5K) with AR-A014418; right: CDK-5 (from 1UNL) with 
roscovitine. White structures: inhibitor pose in downloaded file; green-carbon 
structures: inhibitor docked after removal from complex and optimization of 
ligand-free protein.
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duplicates; generating conformations; ligand optimization with 
Schrödinger’s LigPrep; and prefiltering based on Lipinski’s 
rule of five using the QikProp program (33, 34). Lipinski’s rule 
of five “filters” the compounds using four rules with values that 
are multiples of five: ≤5 hydrogen bond donors, ≤10 hydrogen 
bond acceptors, a molecular mass that is <500 Da, and a partition 
coefficient (log P value) that is ≤5 (35). QikProp predicts absorption, 
distribution, metabolism, and excretion (ADME) descriptors and 
pharmaceutical properties of organic molecules, comparing them 
to 95% of known drugs. The program calculates QPlogBB, the 
blood brain barrier (BBB) partition coefficient for orally delivered 
drugs. The QPPMDCK calculation predicts the permeability in 
nm/s of the Madin-Darby canine kidney (MDCK) epithelial cells, 
which mimic the BBB and are commonly used in research.

     The Glide docking program calculates various parameters to 
evaluate and rank binding affinities of ligands and the preferred 
poses (36) using

    GlideScore = 0.065EvdW+0.130ECoul+ ELipo+ EHbond+ EMetal+ EBuryP+ ERotB+ ESite

in which EvdW is the van der Waals energy, ECoul is the coulombic 
energy, ELipo rewards hydrophobic (London) interactions, EHbond re-
wards hydrogen bonds, EMetal is the metal binding term, EBuryP pe-
nalizes internal polar groups in hydrophobic regions, ERotB penal-
izes immobile rotatable bonds, and ESite rewards polar interactions 
in the active site. DockingScore adds the Epik program state pen-
alties to the GlideScore. These penalties adjust the single “best” 
3-D structure to take account of ionizable groups and tautomers 
that contribute to the isomeric structures of a compound within a 
specified pH range (37).

     DockingScores were used throughout this work to estimate 
binding affinities of ligands to receptor enzymes. This entails sev-
eral assumptions that mostly relate to difficulties in accounting for 
solvation effects in the natural processes. The true binding energy 
(DGBE) is given by

  DGBE = Gcomplex – Gprotein – Gligand

The various terms include solvation effects and the enthalpies and 

entropies involved in the binding process. Even though some 
water molecules were retained in the docking procedures used 
in this work, such effects were assumed to be the same for the 
ligand-protein complexations occurring for a given enzyme. It 
is worth noting that the OPLS3e program used herein is an im-
provement over OPLS3, which is known to have a high degree 
of accuracy in predicting protein-ligand binding, with an RMS 
error of less than 1 kcal/mol when compared to measured binding 
affinities (38).

      Related  reports differ from the current study in that nearly all 
screenings were carried out for two enzymes only (39-41). Addi-
tionally, different databases, screening techniques, and computa-
tional software were used. Most of the studies used ligand-based 
virtual screening (LBVS); some used docking for screening 
instead of a pharmacophore, and some built quantitative struc-
ture-activity relationships (QSARs) models. The research that is 
closest to the present work screened for five of the eight enzymes 
used herein, omitting MAO-A and BuChE, and one BACE1 
structure; multi-target inhibitors that inhibited only two or three 
of the enzymes were evaluated further; only the InterBioScreen 
2016 database of ligands (63,409 compounds) was employed 
(41). In the present work, a higher standard (i.e., at least five 
favorable target enzyme DockingScores) was used; additionally, 
new versions of two databases, InterBioScreen (2019) and Zinc 
15 (2015) were screened with 67,933 and 105,873 compounds, 
respectively (42, 43).

Materials and Methods

      Crystal structure analyses of the targets were obtained from 
the RCSB Protein Data Bank. The PDB IDs for the enzyme com-
plexes were: 2P4J, human BACE1 closed conformation co-crys-
tallized with “compound A;” 4H3G, human BACE1 semi-closed 
conformation with “compound B;” 1Q5K, human GSK-3β with 
ARA014418; 1UNL, human CDK-5 with roscovitine; 4EY7, 
human AChE with donepezil; 2PM8, human BuChE with no 
ligand—rivastigmine was docked to the enzyme in the present 
work; 2Z5X, human Monoamine Oxidase A with harmine; and 
2V5Z, human Monoamine Oxidase B with safinamide.

Donepezil Rivastigmine

Figure 4. Cholinesterases with Docked Known Inhibitors. Left: AChE 
(from 4EY7) with donepezil; white structure, inhibitor pose in downloaded 
file; green-carbon structure, inhibitor docked after removal from complex and 
optimization of ligand-free protein. Right: BuChE (from 2PM8) with rivastigmine, 
docked in the present work.

Harmine Safinamide

Figure 5. MAO Active Sites with Docked Known Inhibitors Harmine and Saf-
inamide. Left: MAO-A (from 2Z5X); right: MAO-B (from 2V5Z). White structures: 
inhibitor pose in downloaded file; green carbon structures: inhibitor docked after 
removal from complex and optimization of ligand-free protein. Yellow structures: 
FAD co-factor.
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Phase e-Pharmacophore Hypothesis and Database Screening

     Each  e-pharmacophore  hypothesis was created using Phase 
with excluded volumes. If four or more pharmacophore sites were 
obtained, they were included in the pharmacophore hypothesis 
only if the XP scores for the interactions were more exergonic than 
-0.4 kcal/mol; for hypotheses with less than four sites, all were 
retained. Hydrogen bond donors were set as projected points. De-
fault settings were used for feature distances (RMSD = 2 Å for 
different feature types, 4.00 Å for the same feature type). Ligands 
prepared from the downloaded databases were screened using the 
hypotheses generated for the individual enzymes.

    The  natural products database was downloaded from Inter-
BioScreen (42). The Zinc 15 databases were: Analyticon Discov-
ery Natural Derivatives, Analyticon Discovery NP, Analyticon 
Discovery NP BB, Aster Sunflower Family NP, AfroDb Natural 
Products, BIOFACQUIM, Biopurify Phytochemicals, Herbal In-
gredients In-Vivo Metabolism, Herbal Ingredients Targets, HMBD 
Toxin, Indofine Natural Products, MolPort Natural Products (bio-
genic and metabolite subsets only), NPACT Database, Specs Nat-
ural Products, TCM Database @Taiwan (biogenic and metabolite 
subsets only), TimTec Natural Derivatives, and UEFS Natural 
Products (43). Each database was prepared with Schrödinger’s 
Phase program—up to 50 conformers were generated for each 
ligand, which were prepared as follows: ionization states (using 
Epik) at pH 7.0, ± 2.0, selected; at most, one low-energy 5- or 6- 
membered ring conformation, selected; four low-energy stereoiso-
mers for each ligand, retained; high-energy ionization states and 
tautomer states, removed. The ligands were “filtered” by Lipins-
ki’s Rule of Five using QikProp properties.

High Throughput Virtual Screening (HTVS)

      The output ligands from Phase screening were used to dock the 
ligands into their respective proteins using high-throughput virtual 
screening (HTVS), keeping the top 30% of the best compounds. 
Ligands with the most favorable binding scores for the active 
sites that also bound to the most proteins were selected for further 
SBVS docking analyses.

Enzyme Docking Preparation

     All polypeptide chains were kept for each enzyme except 2P4J 
for which chains B and C of the tetramer were deleted. Each pro-
tein receptor was prepared using the Protein Prep Wizard: ligands, 
crystallization solvents and non-enzyme metals, deleted; original 
hydrogens, deleted; new hydrogens, missing side chains and miss-
ing loops, added; bond orders, assigned; het groups (pH 7 ± 2), 
added; water molecules beyond 5 Å from het groups, deleted; ze-
ro-order bonds to enzyme metals and disulfide bonds, created; wa-
ters, optimized; waters with less than 3 hydrogen bonds to non-wa-
ters, removed; structure using the OPLS3e force field, optimized.

Enzyme Gridboxes

     Small gridboxes were used for hypothesis creation and HTVS, 
and large gridboxes for the individual dockings of known inhibi-
tors and selected ligands. Gridboxes for enzymes were prepared 
as follows: van der Waals scaling, none; aromatic H as donor hy-
drogen bonds and halogens as acceptors, included. The inner box, 
within which the midpoint of the docked ligand must lie, was cen-
tered on the active site of each enzyme; for small gridboxes, the 

dimensions of the inner box were 10 Å x 10 Å x 10 Å, and for 
large gridboxes, 40 Å x 40 Å x 40 Å. The dimensions of the outer 
box, within which the entire ligand must lie, were determined by 
addition to the inner box of more than half the maximum length of 
the ligand; for small gridboxes this resulted in a box of about 40 Å 
x 40 Å x 40 Å, and for large gridboxes, about 70 Å x 70 Å x 70 Å.

Protein-Ligand Complex Redocking

   Known inhibitors and the ligands obtained from HTVS were 
docked to the enzymes using the following settings: scaling of 
van der Waals’ radii, factor = 0.80 with partial charge cutoff = 
0.15; precision = standard precision; ligand sampling = flexible; 
nitrogen inversions, sampled; ring conformations, sampled; biased 
sampling of torsions for all predefined functional groups, selected; 
Epik state penalties to DockingScores, added;. aromatic H as hy-
drogen bond donors and halogens as acceptors, included; best pos-
es reported, limited to 20; post-docking minimization, performed.

QikProp

    QikProp  was run to find the QPlogBB and QPPMDCK values 
of the screened inhibitors.

Results and Discussion

     The   pharmacophore  hypotheses  that were generated for each 
enzyme are summarized in Table 1. HTVS screening of the data-
bases for matching ligands yielded 24 compounds from the Inter-
BioScreen and 20 compounds from the Zinc 15 databases (Tables 
2,3). 

    Tables  2  and  3  list the best pose Docking Scores within the 
active sites. For the most part, only the best five or six poses were 
examined which tended to be within 3 kcal/mol of the best score. 
A simplified analysis using the relationship

  DGBE = -RTlnK

in which K is the ratio of one ligand-receptor complex to a differ-
ent one (for the same ligand and receptor), shows that a difference 
of 3 kcal/mol indicates a preference for the more exergonic pose 
of about 160-fold, so less exergonic poses were not considered.

    Two  compounds  from  InterBioScreen  (1N05528  and  1N-
72595) and six from Zinc 15 (ZINC314161, ZINC5854353, 
ZINC15674654, ZINC49170543, ZINC96112244, 
ZINC604382088) were selected for comparison to known inhibi-
tors of AD enzymes. The selection was based on the HTVS deter-
minations, based on DockingScores, that they might inhibit five or 
more AD pathway enzymes.

     Docking analyses of most of the known inhibitors to these AD 
enzymes have not been reported previously. The results obtained 
demonstrated the integrity of the docking method. In each case, af-
ter deletion of the known inhibitor from the downloaded complex 
and optimization of the inhibitor-free enzyme, the inhibitors were 
docked to the enzyme to see if they would favor the active site. 
In every case—using large gridboxes that encompassed almost 
the entire subunit in question—the known inhibitor was shown to 
dock favorably within the active site of the enzyme it is known to 
inhibit. Typical results are illustrated in Figures 2-5.
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    In general, for each AD enzyme the most favorable 
DockingScores were obtained for the known inhibitor of that 
enzyme (Table 4). There were exceptions. “Compound A,” the 
known inhibitor of BACE1, showed more favorable binding to 
BuChE (-8.36 kcal/mol) than to BACE1 (2P4J, -7.21 kcal/mol). 
AR-A014418, the known inhibitor of GSK-3b, showed favorable 
binding to that enzyme (1Q5K, -6.71 kcal/mol), but “Compound 
B” gave a more exergonic value (-8.67 kcal/mol) that was beyond 
the RMS error of 1 kcal/mol. Experimental inhibition of GSK-
3b by “Compound B” has not been reported, so it is possible 
that it is an inhibitor of GSK-3b. The exceptionally exergonic 
DockingScore of -10.47 kcal/mol corroborates experimental 
reports of roscovitine’s ability to inhibit CDK-5 (45). Although 
complexed structures for rivastigmine are not available, it is a 
recognized inhibitor of cholinesterases (26)—our docking results 
showed only moderate binding to AChE (4EY7, -6.02 kcal/mol) 
that was far less favorable than that of the other known inhibitor, 
donepezil (-13.38 kcal/mol) and even weaker binding to BuChE 
(2PM8, -4.79 kcal/mol). This does not negate the computational 
docking approach, as rivastigmine’s recognized anticholinesterase 
activity is due to covalent bonding within the active site shifting 

the initial equilibrium of complexation to the product side (44). 
(Covalent docking was not sampled in the present work). 

     It is interesting to note that the monoamine oxidases seem 
to resist binding of compounds within the active site. No binding 
was observed within the active site of MAO-A (2Z5X) for any 
compound other than strongly exergonic binding of the known 
inhibitor, harmine (-9.96 kcal/mol). Moderate binding within the 
MAO-B (2V5Z) binding site was observed for “Compound B,” 
AR-A014418, and rivastigmine, in addition to the recognized 
inhibitor of MAO-A, harmine, that gave a strong exergonic 

 

Table 1. Pharmacophore Hypotheses. A, acceptor (red spheres); D, donor (light-blue sphere); H, 
hydrophobic region (green sphere); P, positive ion (blue sphere); R, ring (orange circle). 

Inhibitor Sites (XP Score) Model 

Compound A 
A6 (-0.47), A7 (-1.18) 
D9 (-0.70), D11 (-0.43), D12 (-0.70) 
R17 (-1.31), R18 (-0.94) 

 

Compound B 

A2 (-1.00) 
D5 (-0.64), D7 (-0.71) 
R9 (-0.57), R10 (-0.64), R11 (-0.64) 
 

 

AR-A014418 
A1 (-1.52) 
D4 (-2.18) 
R8 (-0.84) 

 

Roscovitine 
A2 (-2.10) 
D5 (-0.62), D7 (-2.12) 
R11 (-0.75), R12 (-0.83) 

 

Donepezil 
A3 (-1.68) 
H7 (-1.20), H8 (-1.96) 
R10 (-1.28), R11 (-1.45) 

 

Rivastigmine 
D3 (-0.42) 
P5 (-0.27) 
R6 (-1.25) 

 

Harmine R6 (-1.14), R7(-1.18) 

 

Safinamide 
A3 (-0.70) 
H6 (-0.30) 
R7 (-1.80), R8 (-1.37)  

 

 

Table 2. DockingScorea Energies (kcal/mol) of InterBioScreen STOCK1N Compoundsb to 
AD Enzymes from HTVS Screening. 

Title BACE1 
(2P4J) 

BACE1 
(4H3G) 

GSK-3β 
(1Q5K) 

CDK-5 
(1UNL) 

AChE 
(4EY7) 

BuChE 
(2PM8) 

MAO-A 
(2Z5X) 

MAO-B 
(2V5Z) 

1N-03766   -8.12 -8.99   8.53  
1N-05528c -8.67 -7.18 -7.94 -7.31  -7.94   
1N-05989    -8.93   -9.26 -7.31 
1N-06592  -7.64  -6.34  -6.29   
1N-07221  -7.54 -6.90     -10.39 
1N-11998  -6.03 -8.19  -12.03 -7.14   
1N-14475  -7.02    -6.74 -9.87  
1N-19625  -6.35   -12.62 -6.70  -9.15 
1N-30985     -10.39  -9.63 -9.25 
1N-31555   -8.37 -8.45    -9.07 
1N-48784      -8.02 -9.50  
1N-55783   -8.95 -9.00   -7.09  
1N-70124   -6.99 -8.85   -9.64  

1N-72595c  -6.55 -6.66 -9.00 -11.12   -9.16 
1N-74248  -6.99 -7.18 -9.52     
1N-74528  -8.26 -6.17     -10.318 
1N-77743 -4.60 -7.83  -6.34     
1N-81601 -7.93 -7.07 -7.17      
1N-82268  -6.97 -7.08 -7.29   -9.78  
1N-82334   -7.18 -6.68   -9.67 -9.66 
1N-93603  -7.07 -6.64  -10.41 -8.29   
1N-94295  -6.222   -12.65 -7.52   
1N-94765  -6.26  -6.86 -12.83 -7.02   
1N-95043   -6.48 -9.37    -9.86 

a. All values are from HTVS screening, using small grid boxes. Bolded values emphasize ligands 
which showed favorable docking to at least five enzymes. 
b. InterBioScreen compound designations include the STOCK category, e.g. STOCK1N-05228. 
c. Compounds blocking active sites of five or more enzymes are indicated in bold. 

 
Table 3. DockingScore Energies (kcal/mol) of Screened Inhibitors from Zinc15 Bound to AD 

Enzymes from HTVS Screening. 

Compound ID 
BACE

1 
(2P4J) 

BACE1 
(4H3G) 

GSK-3β 
(1Q5K) 

CDK-5 
(1UNL) 

AChE 
(4EY7) 

BuChE 
(2PM8) 

MAO-
A 

(2Z5X) 

MAO-
B 

(2V5Z) 
ZINC39103  -7.79 -7.84 -7.43   -7.43  

ZINC314161  -6.11 -8.42 -7.87   -7.93 -9.33 
ZINC1663391  -7.48 -6.06 -7.48   -8.59  
ZINC3881190  -6.25 -6.40 -8.05   -10.05  
ZINC4024311  -7.883    -7.36  -9.54 
ZINC5854353 -7.12 -7.50 -6.46 -7.08    -7.81 
ZINC8733315  -6.48 -6.99 -8.85   -9.64  

ZINC15674654 -5.56 -7.60 -5.63 -6.71  -7.26   
ZINC15675012 -7.44 -6.79  -6.60    -9.46 
ZINC20503251  -7.64  -6.11 9.30 -6.49   
ZINC33376662  -7.73 -6.26 -6.77    -9.37 
ZINC35446702   -8.26 -8.10  -7.00  -9.46 
ZINC49170543 -6.73 -5.94 -5.30 -7.44 -12.20   -7.60 
ZINC82383995   -8.12 -7.73   -9.65  
ZINC96112244 -7.73  -5.79  -8.94 -6.31  -8.94 
ZINC96112282  -6.15 -7.28  -12.32    

ZINC209522569  -8.105  -6.71 -6.18    
ZINC253406919  -7.61    -6.70   
ZINC604382088 -8.50 -6.15 -5.77 -7.28  -6.91   
a. All values are from HTVS screening, using small grid boxes. Bolded values emphasize ligands which 
showed favorable docking to at least five enzymes. 
b. Complete Zinc-15 compound designations include the prefix “Zinc,” e.g., ZINC15674654. 
c. Compounds blocking active sites of five or more enzymes are indicated in bold. These were selected 
for individual analyses. 
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DockingScore of -8.20 kcal/mol. Harmine also demonstrated 
very favorable binding to AChE (-9.98 kcal/mol)—a result that 
corroborates reported strong inhibition of AChE by harmine and 
which reinforces the validity of the in silico docking approaches 
herein (46). Safinamide, a known inhibitor of MAO-B (30, 31), 
demonstrated a very favorable binding interaction within the active 
site of MAO-B (-10.54 kcal/mol), as well as to AChE (-10.35 kcal/
mol). Although safinamide has not been used for AD therapy, it 
may be an effective cholinesterase inhibitor.

    Individual docking  results for the compounds selected from 
HTVS screening to AD enzymes are shown in Table 5. Relating 
to potential inhibition of the amyloid pathway in AD, two ligands, 
1N-05528 and ZINC604382088, bound more exergonically (-8.76 
kcal/mol and -8.25 kcal/mol, respectively) to closed conforma-
tion BACE 1 (2P4J) than the recognized inhibitor “Compound 
A” (-7.21 kcal/mol). The improvement exceeded the RMS error 
of 1 kcal/mol. Two others, ZINC96112244 (-7.02 kcal/mol) and 
ZINC314161 (-6.46 kcal/mol), were within 1 kcal/mol of “Com-
pound A.” None of the ligands bound to the semi-closed BACE1 
(43HG) as strongly as the known inhibitor “Compound B” (-8.96 
kcal/mol). However, all eight ligands showed moderate to strong 
binding (-6.2 to -7.8 kcal/mol).

     For  possible  inhibition  of  AD  tauopathy  pathways,  all  the 
ligands bound to GSK-3b with binding energies in the range -6.12 
to -7.68 kcal/mol, equivalent to the known inhibitor AR-A014418 
(-6.71 kcal/mol). In the present work, roscovitine exhibited a 
strongly favorable DockingScore to CDK-5 (1UNL) of -10.47 
kcal/mol. Although none of the screened ligand complexations 
were as exergonic as this, all were moderate to strong binders to 
CDK-5, with scores ranging between -6.84 and -9.41 kcal/mol.

      Relating to possible inhibition of the cholinergic AD pathways, 
although none of the ligands bound as strongly to AChE (4EY7) 
as donepezil (-13.38 kcal/mol), all showed stronger binding (-8.72 
to -10.65 kcal/mol) than the other known acetylcholinesterase in-
hibitor, rivastigmine (-6.02 kcal/mol). Similarly, all the ligands 
showed equivalent or more favorable DockingScores (-5.70 to 
-9.07 kcal/mol) to BuChE (2PM8) than rivastigmine (-4.79 kcal/
mol). However, as stated previously, final rivastigmine binding is 
covalent.

    For  possible  inhibition of the oxidative stress AD pathway, 
five ligands, 1N-05528, ZINC96112244, ZINC15674654, 
ZINC49170543, and ZINC05854353 showed moderate 
DockingScores to MAO-A (2Z5X) of -5.6 to -6.51 kcal/mol that 

 

Table 4. DockingScoresa (kcal/mol) of Known Inhibitors to AD Enzymes. 

Compound ID BACE1 
(2P4J) 

BACE1 
(4H3G) 

GSK-3β 
(1Q5K) 

CDK-5 
(1UNL) 

AChE 
(4EY7) 

BuChE 
(2PM8) 

MAO-A 
(2Z5X) 

MAO-B 
(2V5Z) 

Compound A 

-7.21 -6.47 -6.51b -5.70c None -8.36d None None 

Compound B 

-5.32d -8.96 -8.67 -6.46c -6.54b -7.91 None -5.80e 

AR-A014418 

-5.62 -5.25 -6.71 -7.23c -6.54 -5.69 Nonef -6.34c 

Roscovitine 

-5.15 -5.72 5.45g -10.47 -5.29 -6.40 None Nonee 

Donepezil 

-6.09 -6.93 -6.23a -6.39 -13.38 -7.75 Nonec Nonec 

Rivastigmine 

-4.02 -3.53 Nonef -6.96 -6.02 -4.79 Nonef -6.051 

Harmine 

-6.22 -6.79c -6.91b -6.48 -9.98 -5.34 -9.96 -8.20 

Safinamide 

-7.37 -6.26 -7.74 -7.46 -10.35 -6.32 None -10.54 

a. Scores of the known inhibitor complexes are indicated in bold red. 
b. The best poses were partially within the active sites Other poses were remote. 
c. Top poses within the active site. Others were adjacent and/or remote. 
d. From best pose. Some poses within active site, but most were remote. 
e. Poses were at the active site but not within. 

Table 5. Individual DockingScores (kcal/mol) of Screened Compounds to AD Enzymes. 

Compound ID BACE1 
(2P4J) 

BACE1 
(4H3G) 

GSK-3β 
(1Q5K) 

CDK-5 
(1UNL) 

AChE 
(4EY7) 

BuChE 
(2PM8) 

MAO-A 
(2Z5X) 

MAO-B 
(2V5Z) 

1N-05528 

-8.76 -7.28 -7.28 -8.94 -8.72a -8.22 -6.00c -8.36b 

1N-72595 

-6.05 -6.49 -6.78b -9.41 -9.40 -8.42 None -8.96c 

ZINC314161 
 

-6.17 -6.59 -7.14a -8.02 -9.44 -5.70c None -10.14 

ZINC5854353 

 

-6.03 -7.80 -7.46 -7.72 -9.39 -7.11 -6.17d -8.70a 

ZINC15674654 
 

-6.46 -7.60 -6.12a -7.72 -9.70 -8.38 -6.07d -7.47c 

ZINC49170543 

 

-6.16 -7.05 -7.28 -7.44 -12.24 -8.48 -6.51a -7.45c 

ZINC96112244 
 

-7.02 -6.20 -6.36 -6.84a -10.65 -7.70 -5.60d -8.17a 

ZINC604382088 
 

-8.25 -7.78 -7.68 -8.71a -10.43 -9.07 None -9.38a 

a. From the most exergonic pose. Other poses were observed adjacent to and/or remote from the 
active site. 
b. From the 2nd most exergonic pose. Other poses were observed adjacent to the active site. 
c. All poses adjacent to the active site. 
d. All poses only partially blocked the active site or were remote. 
e. From the 4th most exergonic pose. Most poses were remote from the active site. 
inhibitors, the ligands bound to AD enzymes with moderate to stronger DockingScores.  

a. Scores of the known inhibitor complexes are indicated in bold red.
b. The best poses were partially within the active sites Other poses were remote.
c. Top poses within the active site. Others were adjacent and/or remote.
d. From best pose. Some poses within active site, but most were remote.
e. Poses were at the active site but not within.
f. Some poses adjacent to active site.
g. From sixth best pose. Top poses were not within active site.

a. From the most exergonic pose. Other poses were observed adjacent to and/or remote from 
the active site.
b. From the 2nd most exergonic pose. Other poses were observed adjacent to the active site.
c. All poses adjacent to the active site.
d. All poses only partially blocked the active site or were remote.
e. From the 4th most exergonic pose. Most poses were remote from the active site.



Journal of Undergraduate Chemistry Research, 2019,18(4), 27

were below the strongly exergonic binding of the known inhibitor 
harmine (-9.96 kcal/mol). All the ligands showed moderate to 
strong binding to MAO-B (2V5Z) with DockingScores of -7.45 
to -10.14 kcal/mol that were less favorable or equivalent to the 
safinamide score of -10.54 kcal/mol. 

     All  the ligands  selected from  the  screening process  in this 
work had blood brain barrier permeability properties, indicated by 
QPlogBB and QPPMDCK, in the recommended range -3.0 to 1.2 
for QPlogBB, and 25 to 500 or better for QPPMDCK (Table 6).

Conclusions

     Multi-target  directed ligands (MTDLs) may have significant 
advantages over other drugs in clinical trials or FDA-approved 
drugs for the treatment of AD. The potential therapeutic improve-
ments are augmented in light of recent advances in detecting AD 
at an early stage of the disease (47), because treatment by a single 
multi-target ligand at initial stages might significantly decrease the 
rate of disease progression.

       HTVS screening  identified 24 InterBioScreen compounds and 
20 from Zinc 15 as having potential therapeutic properties against 
processes that relate to AD. Eight ligands (1N-05528, 1N-72595, 
ZINC314161, ZINC5854353, ZINC15674654, ZINC49170543, 
ZINC96112244, ZINC604382088) were analyzed further through 
SP docking studies. The results showed binding affinities, as mea-
sured by DockingScores, that were comparable to known inhib-
itors of enzymes that promote AD and/or AD symptoms (Table 
5). This indicates promising potential for being able to function 
as multi-target directed ligands (MTDLs). Some of the known in-
hibitors of at least one AD pathway enzyme also showed binding 
to multiple enzymes, namely, donepezil, harmine, and safinamide. 
For example, the FDA-approved anticholinesterase drug, donepe-
zil, indicates moderate binding to BACE, as well as the kinases 

GSK-3b and CDK-5. In fact, inhibition of BACE by donepezil has 
been reported (48, 49).

     Docking  of all original inhibitors (obtained from co-crystal-
lized PDB structures, after deletion of the inhibitor and optimiza-
tion of the ligand-free enzyme), and of the ligands found by HTVS 
screening showed complexation within the active sites with poses 
similar to those in the original PDB structures. This indicates that 
the pharmacophore screening and HTVS docking procedures were 
reliable for finding compounds with chemical properties that mim-
ic the original inhibitors.

    Although this work pursued detailed studies for ligands that 
showed potential to inhibit 5 or more AD enzymes, other com-
pounds in Tables 2 and 3 showed favorable docking to two or more 
enzymes, and might be worth studying either as MTDLs, or as 
compounds that could serve as base structures for suitable synthet-
ic analogs. It is worth noting that four of the 44 ligands found are 
natural products. ZINC05854353, or luteone, is present in com-
mon beans; ZINC1663391, can be found in Muscari comosum, 
also known as the tassel hyacinth; STOCK1N-05989, or naringen-
in, is a flavonoid often found in citrus fruits, tomatoes, and figs; 
STOCK1N-74248, or sulfuretin, is a flavonoid isolated from Tox-
icodendron vernicifluum, also known as the Chinese lacquer tree.

      Limitations of this study include: reliance on solid state crystal-
lographic structures based on solids that can only be obtained after 
treatments with solvents, salt solutions, and solutions of varying 
pH that may cause structural changes in proteins and complexes; 
possible differences between the solvated protein-ligand complex-
es and the isolated computational structures; the docking of one li-
gand to one receptor (neglect of multi-drug complexation effects); 
and flexibility constraints of protein receptors. 

     This  research illustrates a valid approach for rapid screening 
of suitable drug candidates and promotes the discovery of novel 
compounds, including natural products, for the advancement of 
therapeutic treatments for Alzheimer’s disease. This work could be 
continued through expanded docking studies and compound selec-
tions, and laboratory enzymatic assays of compounds to analyze 
their inhibitory effects.
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