
Two-Dimensional Empirical Mode Decomposition and its

Applications

Wesley Brown

April 28, 2022

1 Introduction

Analyzing wave functions is integral for numerous medical practices. In order to understand a
patient’s condition, physicians must have an accurate reading of the body’s biological signals.
Signals such as electrocardiograms (ECG), respiratory signals, blood pressure and circadian rhythm
can become muddled by interference, making an accurate reading more difficult. For the sake of a
patient’s health, methods of circumventing these problems become necessary.

To solve this problem, interference signals must be removed from scans. There are multiple meth-
ods by which to remove this interference, including Wavelet Transforms, Fourier Transforms and
Empirical Mode Decomposition (EMD). Each of these methods takes a signal input and outputs
multiple component signals sorted according to frequency content. Since interference is largely a
high frequency phenomenon, it may be extracted from these components.

With multiple methods of decomposing signals for practical and potentially lifesaving applications,
we must ask the question: which of these methods works most efficiently? Fourier Transforms
efficiently decompose signals into waves with constant periods and amplitudes across a period of
time, making it less useful for analyzing complex signals. While Wavelet Transforms are suitable to
analyze signals with varying periods and amplitudes, the calculations are dependent on a particular
wavelet and are complicated to extend to two-dimensional signals. To show why EMD is a notable
method of signal analysis, we will look at these other time frequency (TF) methods in section 2 as
well as EMD in section 3.

Beyond observing these one-dimensional signals from the body, it is also worthwhile to analyze two-
dimensional images obtained by medical scans such CT or MRI scans. Just like one-dimensional
signals, these images can be plagued by interference. In section 4 we will discuss how to adapt
EMD for two-dimensional applications.

There are also methods to improve both one-dimensional and two-dimensional EMD. The EMD
algorithm utilizes interpolation to decompose signals. Out of two methods of interpolation, cubic
spline interpolation (CSI) and shape preserving interpolation (SPI), the latter has been shown to
be more efficient for one-dimensional applications [7]. However, in sections 5 and 6, we will test

Page 1

which method works best for two-dimensional applications and analyze how the results show that
shape preserving interpolation works more efficiently for two-dimensional applications.

2 Background

2.1 Fourier Transforms

The Fourier transform analyzes the features of a wave signal by treating that signal as the sum of
more simple sine and cosine functions. The Fourier transform is a function which takes an input,
g(t), of some given signal. The transform winds a signal in a circular motion at some variable
frequency. This frequency constantly changes while we record the signal’s center of mass using
real and complex coordinates. The resulting output is a function with the winding frequency as
an input. The output ĝ(t) is a complex number which corresponds to the strength of a frequency
in the original function. With these frequencies recorded, we can then separate the original signal
into more simple sine and cosine functions [1]. The function is described by the following equation:

ĝ(t) =

∫ ∞

−∞
g(x)e−2πixt dx

where e is the element that performs the winding effect on the signal.

Because the Fourier transform assumes that the amplitude and phase of a wave component remains
constant across time, it is limited in its ability to analyze frequency and more complex signals like
those produced by heart rate and other vital signs. Therefore, we need a method which accounts
for changing amplitudes and phases of a given signal component. Empirical Mode Decomposition
(EMD) functions as such a time-frequency (TF) method [8].

2.2 Wavelet Transforms

Wavelet Transforms use multiresolution analysis to obtain time-frequency representations of signals.
The process begins with a window function known as a mother wavelet, which is then dilated or
compressed and shifted as necessary. By multiplying a given signal with these dilated and shifted
versions of the mother wavelet, we are able to localize the signal before examining its frequency
content. In this way, we may obtain multiple frequencies across the time axis, resolving the Fourier
Transforms limitation. [3].

While the Wavelet Transform is able to analyze signals with variable amplitudes and phases, the
calculations are quite complex and depend on the arbitrarily chosen mother wavelet. These complex
calculations make applications in two dimensions computationally intensive and inefficient.

For our purposes we need a simple, data-defined decomposition scheme which allows for diverse
frequencies and amplitudes within a single component and which may be easily extended to two-
dimensional applications. Empirical Mode Decomposition functions as such a scheme.

Page 2

3 EMD

EMD utilizes a multi-step iterative process to separate signals into components. Broadly, the
process uses interpolation methods on a signal to obtain a new function which represents the
highest frequency oscillations present in the signal. That function is subtracted from the original
signal. We repeat the interpolation step until some stopping criterion is met. The resulting output
functions can be viewed as the components of the original signal [6].

This process begins by considering local oscillations on the input signal, x(t). We first look at the
local detail which corresponds to the oscillation between two extrema. This local detail lets us
define the high frequency values of the input signal. If we look at two consecutive minima, say t−
and t+, then we can define the local detail as {d(t), t− ≤ t ≤ t+}.

With a defined set of high frequency signals, we can also determine the set of local low frequency
signals, the local trend m(t), such that x(t) = m(t) + d(t) for t− ≤ t ≤ t+ [6]. This process can
be done across all oscillations of x(t). Furthermore, the process can be reiterated to receive more
finely detailed components, or intrinsic mode functions (IMF’s), of x(t).

Because EMD relies on local oscillations along the time axis rather than broad trends, it can be
more useful for determining the components of more complex and inconsistent functions, unlike
Fourier Transforms and Wavelet Transforms

We can summarize the EMD process into these six steps [6]:

1. Determine the extrema along the time axis of input x(t).

2. Interpolate across the maxima and the minima, respectively, to yield upper and lower envelopes
of the signal.

3. Find the mean m(t) between these two functions at every point t.

4. Subtract, or sift, m(t) from x(t).

5. Repeat steps 2-4 on x(t) − m(t) until we meet some predetermined stopping criterion. The
output is an IMF f1(t).

6. Repeat steps 2-5 on x(t) − f1(t) to find the remaining IMF’s, f2(t), ..., fn(t), where fn(t) is
whatever remains after all substantial signal data has been sifted.

Figure 1 illustrates the interpolation and sifting process.

Page 3

(a) Using interpolation, we form continuous function
across all local maxima and minima, the red function
and the blue function respectively.

(b) Taking the mean of the red and blue function
across every point on the time axis, we receive the
green function. Subtracting that function from x(t),
the black input signal, we perform one sift.

Figure 1: Illustration of the interpolation, mean, and sifting process where the input signal x(t), is
the black function.

For a concrete example of EMD in practice, we can look to the following example. The following
figure shows an input function on the left (a) which we define as f(t) = cos(8πt) + cos(2πt). Our
implementation of the EMD algorithm correctly estimated the high and low frequency IMF’s (b),
outputting two approximations of the functions, g(t) = cos(8πt) and h(t) = cos(2πt).

(a) The input function
(b) The output of high frequency and low frequency
intrinsic mode functions (IMF’s)

Figure 2: Implementation of EMD on a simple one-dimensional wave function.

Concerning the EMD algorithm, there are a couple questions we must ask. Firstly, during step 5,
how do we know how many times to sift before we obtain an accurate IMF? In other words, How
many times should we find the mean m(t) and subtract it from x(t)? The other question relates
to step 6. How do we know when we’ve obtained all the IMF’s? Let’s address the first question
concerning stopping criteria.

Page 4

3.1 Stopping Criteria

Because EMD considers the oscillations between extrema, it follows that we would have to analyze
oscillations to determine when an IMF has been found. We first must more concretely define what
makes an IMF.

There are two characteristics to ascribe to IMF’s [7].

1. The upper and lower envelopes of the IMF should approximately be symmetric across the time
axis.

2. The number of extrema on the IMF should be equal to its number of x-crossings give or take
one.

The IMF must maintain these characteristics for a set number of sifts to be considered an IMF.
We call this criterion the S-Number Method [5]. For the purposes of these tests, we let S = 10,
meaning that sifting would stop if the output had the characteristics of an IMF for 10 consecutive
sifts. Sifting would stop altogether if more than 15 consecutive sifts had to take place. We chose
S = 10 because our tests showed this number to work best for efficiency and accuracy.

3.2 Determining the Number of Components in a Signal

There must be some method of determining when there are enough components of x(t). There are
a few ways to determine whether all notable IMF’s have been found. Firstly, we can determine
when to stop sifting the remainder based on its monotonicity. If there are no more local extrema,
then there are no more high or low frequency components to find. Therefore, we would have all
the components of the input signal.

We can also check how close the remainder is to monotonicity based on how many extrema are left on
the remainder function. If there is only one local maxima or minima left on the remainder, making
for a parabola shaped function, then the function is relatively close to monotonicity, meaning all
high and low frequencies of the input have been found.

We can also determine whether to continue sifting by checking the remainder’s maximum amplitude.
To perform this check, we simply choose some small value, say 0.1, after iterating on the input x(t),
if each point along the remainder of x(t) is less than 0.1 then we can determine that the remainder
is small enough to be considered a zero function. We can then stop sifting.

4 Two-Dimensional EMD

While there exist multiple ways of generalizing EMD for two dimensions (e.g., multivariate inter-
polation), we are focusing on the multidimensional ensemble EMD method described by Chih-Sung
Chen [2]. This method uses the same algorithm as one-dimensional EMD, by applying the algo-
rithm to individual rows and columns of an image. After performing EMD on each individual row

Page 5

and column of an image, we combine the resulting IMF’s using a predetermined configuration. The
multidimensional ensemble EMD (MDEEMD) describes the configuration used for our testing.

First, we represent the input image as an i× j matrix such that

X(i, j) =

x1,1 x1,2 · · · x1,j
x2,1 x2,2 · · · x2,j
...

...
...

...
xi,1 xi,2 · · · xi,j

 .

We now have i one-dimensional horizontal signals and j one-dimensional vertical signals. We can
run EMD on each of these signals as we normally would for one-dimensional signals. First we run
EMD on each of the Horizontal signals. We suppose that each signal has m components (intrinsic
mode functions). Then, we have the following array of IMF’s which we will call the RX matrices
where R denotes row decomposing [2]:

RX(1, i, j) =

rx1,1,1 rx1,1,2 · · · rx1,1,j
rx1,2,1 rx1,2,2 · · · rx1,2,j

...
...

...
...

rx1,i,1 rx1,i,2 · · · rx1,i,j

RX(2, i, j) =

rx2,1,1 rx2,1,2 · · · rx2,1,j
rx2,2,1 rx2,2,2 · · · rx2,2,j

...
...

...
...

rx2,i,1 rx2,i,2 · · · rx2,i,j

...

RX(m, i, j) =

rxm,1,1 rxm,1,2 · · · rxm,1,j

rxm,2,1 rxm,2,2 · · · rxm,2,j
...

...
...

...
rxm,i,1 rxm,i,2 · · · rxm,i,j

 .

Each RX matrix contains the mth component of each signal in X(i, j). Every matrix represents a
different component of X. Every row in a particular matrix represents a different row of X. In
other words, the first row of the matrix RX(m, i, j) is the mth component of the first row of the
matrix X(i, j), The second row of the matrix RX(m, i, j) is the mth component of the second row
of the matrix X(i, j) [2], and so on such that

X(i, j) = RX(1, i, j) +RX(2, i, j) + · · ·+RX(m, i, j).

With the signal broken down by rows, we now need to break down each of those components
by column. Suppose that there will be n components for each column. Similar to the previous

Page 6

step, we’ll put together an array of CRX matrices CRX(m,n, i, j), where C denotes column-
wise decomposition, m denotes the row component being worked on, and n denotes the column
component.

Like the RX matrices, it follows that

RX(1, i, j) = CRX(1, 1, i, j) + CRX(1, 2, i, j) + · · ·CRX(1, n, i, j)

RX(2, i, j) = CRX(2, 1, i, j) + CRX(2, 2, i, j) + · · ·CRX(2, n, i, j)

...

RX(m, i, j) = CRX(m, 1, i, j) + CRX(m, 2, i, j) + · · ·CRX(m,n, i, j).

We can represent each CRX matrix as the following:

CRX(m,n, i, j) =

crx1,1,i,j crx2,1,i,j · · · crxm,1,i,j

crx1,2,i,j crx2,2,i,j · · · crxm,2,i,j
...

...
...

...
crx1,n,i,j crx2,n,i,j · · · crxm,n,i,j

The described matrix contains the m row-wise decomposition components and their n column-wise
decomposition components [2].

With all the row-wise and column-wise components obtained, we must recombine them in an order
that outputs complete two-dimensional components ordered according to frequency. The m × n
CRX matrix itself contains only partial representations of a two-dimensional IMF. Because EMD
first filters out high frequency signals, the first row and first column of the CRX matrix will contain
comparable elements. Therefore, by adding together the elements of the first row and first column,
we can obtain a full two-dimensional IMF. The same principle can be applied to the rest of the
elements in the CRX matrix. We therefore have a configuration which we can represent with the
following illustration.

Figure 3: Configuration for finding two-dimensional IMF’s [2]

Page 7

Using this figure as a basis, we then have the complete components of the original image. For
example, when m = n = 4, the CRX matrices will be combined into the following four IMF’s:

C1 =
∑4

m=1 crxm,1 +
∑4

n=1+1 crx1,n = crx1,1 + crx2,1 + crx3,1 + crx4,1 + crx1,2 + crx1,3 + crx1,4

C2 =
∑4

m=2 crxm,2 +
∑4

n=2+1 crx2,n = crx2,2 + crx3,2 + crx4,2 + crx2,3 + crx2,4

C3 =
∑4

m=3 crxm,3 +
∑4

n=3+1 crx3,n = crx3,3 + crx4,3 + crx3,4

and

C4 =
∑4

m=4 crxm,4 +
∑4

n=4+1 crx4,n = crx4,4.

We can use the following general equation to represent two-dimensional components:

Cl =
∑m

i=l crxi,l +
∑n

j=l+1 crxl,j

where l represents which IMF is being constructed based on the level of the CRX matrix currently
being observed [2].

This same process can be generalized to any dimension, however, for the purposes of our testing,
we will be primarily looking at two-dimensional applications.

5 Interpolation Schemes

5.1 Cubic Spline Interpolation

Cubic spline interpolation is the widely used method for interpolation between a set of points. It’s
largely favored because of its ability to output a smooth piece-wise polynomial that passes through
the set of points.

To accomplish this smoothness, cubic spline interpolation puts a number of constraints on the
output piece-wise polynomial. Given a set of points (x0, y0), (x1, y1),..., (xn, yn) cubic spline in-
terpolation specifies a method of constructing cubic polynomials s0(x), s1(x), ..., sn−1(x) such that
each si(x) interpolates (xi, yi) and (xi+1, yi+1). The cubic spline S is then defined by

S(x) =

S0(x), x ∈ [x0, x1],
...

...

Sn−1(x), x ∈ [xn−1, xn]

.

In addition, a few characteristics must be true to ensure that S is sufficiently smooth. In or-
der for the set of functions S to be continuous it must be true that s0(x1) = s1(x1), s1(x2) =
s2(x2), ..., sn−2(xn−1) = sn−1(xn−1). In order to achieve smoothness in addition to continuity, the
first and second order derivatives of S must also be continuous at the knots x1, ..., xn−1. With these
constraints, the cubic spline interpolation method calculates a set of cubic polynomial functions
that all fit together smoothly.

Page 8

For each of these cubic polynomials, we need coefficients for every term of the polynomial. The
conditions listed above allow us to find those coefficients, giving us each cubic polynomial of the
form sj(x) = aj(x− xj)

3 + bj(x− xj)
2 + cj(x− xj) + dj . Because we are dealing with dozens and

potentially hundreds of data points and polynomials, we perform these calculations using matrices.
These calculations can be performed using a built in function in Matlab.

While cubic spline interpolation mostly yields good results for two-dimensional EMD applications,
there are a couple potential drawbacks to its use. Because cubic spline interpolation does not take
into account changes in concavity, it may read false extrema in the upper and lower envelopes,
resulting in a less accurate sift [2]. Therefore, we must find and test an interpolation method which
will output more accurate envelopes for use in the sifting step. Shape preserving interpolation,
intially proposed by L.L. Schumaker in [4], may be such a method.

5.2 Shape Preserving Interpolation

Shape preserving interpolation seeks to construct each spline in terms of normalized quadratic B-
splines, allowing for more smoothness and consistent concavity across splines. To this end, shape
preserving interpolation assigns the following knot sequence:

x : x−2 = x−1 = x0 < x1 < x2 < ... < x2n−1 < x2n = x2n+1 = x2n+2.

The interpolation points coincide the knots with even indices x2i. Therefore, we account not only
for the interpolation points but also for particular points in between that will allow us to better
specify the shape of the resulting spline. Given our set of points (x0, y0), (x1, y1),..., (xn, yn), we
rename them

x2i = xi, y2i = yi, i = 0, ..., n.

We define the knots with odd indices x2i+1 using the algorithm provided in [4]. Essentially, the
algorithm calculates the location of each x2i+1 so that the monotonicity and concavity present in
the data may be preserved. These calculations are based on the slope of the data at the knots x2i
as well as the distances between each (x2i, y2i), (x2i+2, y2i+2).

Once the full knot sequence is specified we construct a spline interpolant over these knots and the
given interpolation points, giving us a smooth piece-wise polynomial which will account for any
sudden or unexpected shifts in concavity [7]. Because of this method’s apparent improvements over
cubic spline interpolation, we anticipate it making our EMD implementation more accurate.

5.3 Comparing Schemes

To compare these interpolation methods, we must run a series of tests using both methods. We first
start by constructing a two-dimensional image, then overlaying a random interference signal on top
of it. We will then apply our two-dimensional EMD scheme to decompose the noise-polluted image

Page 9

into IMF’s. This will allow us to estimate the interference (present in the high-frequency IMF’s)
and remove it. Finally, we will be able to estimate the original signal by summing the noise-free
IMF’s. For these tests we will use the following image which we polluted with noise using randomly
generated numbers:

Figure 4: Test image with random interference

We will use five different methods of measurement to capture a full picture of which method
works better and why. For these tests we will utilize the root mean square error, a standard error
measurement tool used in other literature, which can be represented by the following equation:

RMSE =

√∑N
i=1(Original− Estimate)2

N
, (1)

where Original is the input signal without the interference, Estimate is an approximation of the
original image found by summing predetermined IMF’s, and N is the number of elements, or pixel
values, in the image.

We also look to the maximum error, which simply records the greatest difference between a point
on the IMF sum and its corresponding point on the original image. We represent the maximum
error with the following equation:

max error = max
1≤i≤N

|Original(i)− Estimate(i)|. (2)

We also record the minimum error, which similarly records the smallest difference between the
input image and the component and can be represented as

min error = min
1≤i≤N

|Original(i)− Estimate(i)|. (3)

We also record the mean error, or average difference between the input and component, represented
by

Page 10

mean error = mean|Original− Estimate|. (4)

Additionally, we find the standard deviation of the errors between the original image and the
component, as represented by

SD error = SD|Original− Estimate|. (5)

We finally analyze the error ratio which is defined as

ratio = 1− corr (6)

where corr is the correlation coefficient between the component and the input image.

To maintain consistency in the results, we will run these tests 100 times, changing the random
interference every time we run the tests. The result of the 100 tests will be averaged so that we
have a more accurate picture of which interpolation scheme works best. The component we compare
to the original image will be the composition of all IMF’s except for IMF 1, which is primarily the
higher frequency of the interference.

6 Results

Across all measurements shape preserving interpolation proved to be more accurate for decomposing
images with random signal interference.

The algorithm was run 100 times to receive an accurate error average. The following table displays
the average root mean square error, error ratio, maximum error, minimum error, mean error, and
standard deviation of the error where the first row of the table is for Shape Preserving Interpolation
(SPI) and the second row is for Cubic Spline Interpolation (CSI).

S = 10 RMSE Error Ratio Max Error Min Error Mean Error Standard Deviation

SPI 0.132052795 0.029390902 0.883422418 2.80789 · 10−5 0.090664773 0.095992222

CSI 0.248829136 0.102321405 1.535730617 2.37945 · 10−5 0.180257443 0.171063842

Across all categories, excepting minimum error, shape preserving interpolation performed better
than cubic spline interpolation. The small difference in minimum error, only 4.2844 · 10−6 suggests
that the difference of performance in that category is negligible.

The tests show a great difference in the performance of every other category. Cubic spline interpo-
lation has a better RMSE, Error Ratio, Max Error, Mean error, and Standard deviation by nearly
0.1.

Page 11

7 Examples

The accuracy of shape preserving interpolation can be confirmed visually. The image in figure 5
shows one image we used in our testing before feeding it through our two EMD variations.

Figure 5: Image before EMD application

The images in figure 6 display how shape preserving interpolation makes a better distinction
between high and low frequency signals. This improved distinction results in noticeably sharper
edge tracing on the image. By contrast, the cubic spline interpolation implementation results in
greater blurring around edges.

(a) Cubic Spline Interpolation (b) Shape Preserving Interpolation

Figure 6: Visual comparison of shape preserving interpolation and cubic spline interpolation

Similarly, figure 7 displays a more clean rendering of the lower frequency values found through
shape preserving interpolation. The images found using SPI are both clearer are have less image
smearing.

Page 12

(a) Cubic Spline Interpolation (b) Shape Preserving Interpolation

Figure 7: Visual comparison of shape preserving interpolation and cubic spline interpolation

8 Conclusion

Compared to other methods like Fourier Transforms and Wavelet Transforms, EMD is one of the
most efficient and simplest methods for image decomposition. Despite its simplicity, EMD’s ability
to break down complex signals makes it ideal for use in the medical field. Additionally, shape
preserving interpolation is currently the best method for the sifting step of EMD. Shape preserving
interpolation improves accuracy for both one-dimensional and two-dimensional applications.

References

[1] Ronald N Bracewell. The fourier transform. Scientific American, 260(6):86–95, 1989.

[2] Jeng Yih Chen, Chih-Sung. Two-dimensional nonlinear geophysical data filtering using the
multidimensional eemd method. Journal of Applied Geophysics, 111:256–270, 2014.

[3] Lu Jiangeng Wu Hau-Tiend Daubechies, Ingrid. Synchrosqueezed wavelet transforms: An em-
pirical mode decomposition-like tool. Applied and Computational Harmonic Analysis, 30:243–
261, 2011.

[4] Schumaker L. On shape preserving quadratic spline interpolation. 20(4), 1983.

[5] J. C. Nunes, S. Guyot, and E. Deléchelle. Texture analysis based on local analysis of the
bidimensional empirical mode decomposition. Mach. Vision Appl., 16(3):177–188, 2005.

[6] Gabriel Rilling, Patrick Flandrin, and Paulo Gonçalves. On empirical mode decomposition
and its algorithms. Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image
Processing NSIP-03, 3, 06 2003.

[7] Maria van der Walt. Empirical mode decomposition with shape-preserving spline interpolation.
Results in Applied Mathematics, 5.

[8] Maria van der Walt. A survey of time-frequency methods. 2013.

Page 13

	Introduction
	Background
	Fourier Transforms
	Wavelet Transforms

	EMD
	Stopping Criteria
	Determining the Number of Components in a Signal

	Two-Dimensional EMD
	Interpolation Schemes
	Cubic Spline Interpolation
	Shape Preserving Interpolation
	Comparing Schemes

	Results
	Examples
	Conclusion

