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Abstract
	

Despite its inadequacy for qualifying coffeine in complex energy drinks due to profound matrix effects, direct UV-Vis spectroscopy proves 
highly valuable as rapid tool for qualitative discrimination. In this study, UV–Vis spectroscopral fingerprints combined with chemometric 
tools were used to discriminate among Red Bull variants. Absorbance spectra (200-500 nm) showed consistent peaks at 200-230 nm and 
270-280 nm, associated with caffeine and other aromatic compounds, with Peach and Red exhibiting higher intensities than Blue or Sum-
mer. PCA of the raw spectra explained 97% of the variance, while HCA grouped Blue-Summer, Coconut-Red, and Yellow-Normal, consistent-
ly identifying Sugarfree as distinct. First derivative preprocessing enhanced subtle differences, improving separation in PCA (PC1 = 79.8%, 
PC2 = 11.6%) and reinforcing Sugarfree’s unique profile. Second derivative preprocessing sharpened spectral features but introduced 
noise, reducing explained variance (PC1 = 17.9%, PC2 = 13.1%) while distinguishing Coconut and Green. Overall, Sugarfree emerged as 
the most divergent variant, while recurring clusters highlighted formulation similarities. The results demonstrate that UV–Vis spectroscopy 
with PCA and HCA offers a rapid, non-destructive approach for quality control and authentication of energy drinks.
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Introduction

The global energy drink market has experienced exponential 
growth over the past two decades, becoming a multi-billion dollar 
industry fueled by demand from adolescents, young adults, and 
professionals seeking enhanced cognitive performance and physi-
cal endurance.1 Among these beverages, Red Bull® is a pioneering 
and dominant brand, consistently ranking as one of the most con-
sumed energy drinks worldwide.2 The purported efficacy of these 
drinks is primarily attributed to their functional ingredients, which 
commonly include caffeine, taurine, B-vitamins, and glucurono-
lactone, often in a high-glycemic matrix.

Caffeine (1,3,7-trimethylxanthine) is the central psychoac-
tive ingredient in most energy drinks. As a non-selective adenos-
ine receptor antagonist, it promotes neuronal excitation, leading 
to increased alertness, improved concentration, and delayed onset 
of fatigue.3 The caffeine content in a standard 8.4 fl oz (250 mL) 
can of Red Bull is approximately 80 mg, an amount designed to 
provide a stimulant effect while remaining within generally recog-
nized safe limits for most adults.4 Given its critical role, accurate 
quantification of caffeine is essential for both regulatory compli-
ance and consumer information.

Ultraviolet-visible (UV-Vis) spectroscopy is a widely em-
ployed technique for the quantitative analysis of caffeine due to 
its simplicity, cost-effectiveness, and rapid turnaround time.5 Caf-
feine exhibits a characteristic absorption maximum near 273 nm 
in aqueous solutions. However, a significant analytical challenge 
arises from the complex and often opaque matrix of commercial 
energy drinks. Other constituents, such as artificial colorants (e.g., 
Brilliant Blue FCF, Allura Red AC), preservatives like benzoic 
acid, and various flavoring compounds, can also absorb light in the 
UV region, leading to spectral overlap and potential interference.6 
This matrix effect can cause inaccuracies in direct spectrophoto-
metric measurements, yielding values that may not reflect the true 

caffeine concentration.

To deconvolute these complex spectral signals and extract 
more robust chemical information, chemometric techniques are in-
creasingly applied. Derivative spectroscopy is a powerful method 
that enhances spectral resolution by eliminating baseline drift and 
separating overlapping absorption peaks.7 By converting a stan-
dard absorbance spectrum into its first or second derivative, the 
contributions of broad, background absorption from interferents 
can be minimized, allowing for more accurate quantification of the 
target analyte.

In addition, chemometric techniques have become indis-
pensable tools for extracting meaningful information from spec-
troscopic data with principal component analysis (PCA) and hi-
erarchical cluster analysis (HCA) among the most widely used 
methods.  PCA reduces complex, high-dimensional datasets into 
a few uncorrelated components that capture the main sources of 
variation, allowing visualization of patterns, clusters, and outli-
ers.8,9 This approach has been applied in food and beverage re-
search to authenticate products and distinguish varieties.10 HCA 
complements PCA by grouping samples based on spectral similar-
ity into dendrograms, providing an intuitive representation of their 
relationships.11 Together, PCA and HCA offer a powerful strategy 
for identifying natural groupings and have been effectively used to 
differentiate products such as tea and honey.12,13

This study has two main objectives: (1) to demonstrate the 
limitation of direct UV-Vis specrsocpy for quantifying caffeine 
in complex energy drink marices by comparing the results with 
the manufaacturer’s product labeling, highlighting the significant 
matrix effects; and (2)to apply derivative spectroscopy 
combined with PCA and HCA to differentiate samples based 
on their full UV absorption profiles. This shift in approach—
from failed targeted quantification to successful non-targeted 
fingerprinting establishes UV-Vis spectroscopy as a potent, 
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rapid, and cost-effective tool for the qualitative authentication 
and quality control of beverages.

Materials and Methods

Reagents and Samples. 
An analytical standard of caffeine (≥99.0% purity) was pur-

chased from Sigma-Aldrich (St. Louis, MO, USA). High-perfor-
mance liquid chromatography (HPLC) grade water was used for 
all dilutions to minimize UV-absorbing impurities. Nine distinct 
flavors of Red Bull energy drink were purchased from local retail 
stores in New York, NY. The Red Bull variants analyzed (Figure 1) 
included: Original (Normal), Sugarfree, Red (Watermelon), Yel-
low (Tropical), Blue (Blueberry), Green (Dragon Fruit), Coconut, 
Peach and Summer (Curuba Fruit). The samples were stored in 
sealed containers at room temperature prior to analysis to maintain 
their original composition. 

Sample Preparation. 
A 0.1 mL aliquot of each sample was accurately pipetted into 

a 10 mL volumetric flask and diluted to the mark with HPLC grade 
water, resulting in a 100-fold dilution. This dilution factor was de-
termined to bring the caffeine concentration within the linear range 
of the calibration curve while reducing the absorbance of interfer-
ents to a manageable level. 

Calibration Curve. 
A primary stock solution of caffeine (100 ppm) was prepared 

by dissolving 10.0 mg of the analytical standard in HPLC water in 
a 100 mL volumetric flask. A series of working standard solutions 
were prepared by appropriate dilution of the stock solution to con-
centrations of 0.5, 1.0, 2.5, 5.0, 7.5, and 10.0 ppm.

Absorbance Collection. 
Each sample solution was then scanned using a UV-Vis spec-

trophotometer (JASCO V600) over the range of 200-500 nm. 
Three replicates were obtained for each sample (3 containers for 
each tea variant) and each reading was saved in csv file and then 
exported to Excel file. 

Derivative Spectroscopy. 
The average of the absorbance data collected in Excel was 

obtained and then transferred to Igor software to generate the first 
and second derivative spectra using Igor software. The different 
spectra (zero, first, and second derivative) were plotted, and com-
parisons were made between the absorbance and derivative spectra 
to identify key chemical differences among the samples.

Multivariate Analysis. 
OriginPro was used to conduct multivariate analyses, 

specifically PCA and HCA. Both absorbance from different 
containers of each sample and averaged derivative data were 
exported from Excel into Origin, where PCA and HCA were 
performed following the procedures described by Grabato et al. 
(2022).14

Results and Discussion

The caffeine content in the nine Red Bull variants was deter-
mined using a validated external calibration curve (y = 0.0312x + 
0.0241, R² = 0.9903), where y is absorbance and x is the concen-
tration in ppm. he non-zero y-intercept (0.0241 AU) is a minor 
systematic bias, but the high R² value confirms a strong linear re-
lationship across the concentration range studied 

According to the manufacturer, all flavors are standardized to 
contain approximately 80 mg of caffeine per 8.4 fl oz can. The 
direct UV-Vis quantification method  failed  to accurately deter-
mine the caffeine content, with calculated concentrations (Table 1) 
deviating substantially from the manufacturer’s label declaration 
ranging from values close to 79 mg for Sugarfree and Green up 
to more than 200 mg per can for Peach.  Such overestimation is a 
well-documented pitfall of direct UV spectrophotometry in com-
plex matrices and is not indicative of labeling inaccuracy.5,15These 
results confirm that univariate UV-Vis analysis is unsuitable for 
targeted caffeine quantification in these complex matrices due to 
insurmountable spectral interference.

The high relative standard deviations observed (e.g., exceed-
ing 50% for several variants) indicate poor precision in the direct 
spectrophotometric measurements. This variability is likely at-
tributed to the heterogeneous nature of the beverage matrix, which 
includes suspended components and micelles that may not be 
uniformly distributed across aliquots, especially after a 100-fold 
dilution. This effect is compounded by the spectral overlap from 
interferents, making the measurement highly sensitive to minor pi-
petting and dilution inconsistencies

These significant discrepancies are not indicative of 
inaccurate product labeling but are a direct consequence of 
spectral interference from the complex beverage matrix. Energy 
drinks contain multiple UV-absorbing compounds, including 
synthetic colorants (e.g., Allura Red AC in the Red variant, 
Brilliant Blue FCF in the Blue variant), preservatives like benzoic 
acid, and various phenolic flavoring compounds.6 As shown in the 
raw absorbance spectra (Figure 2), all samples exhibited strong, 
overlapping absorption bands between 200–230 nm and 270–280 
nm. While caffeine contributes significantly to the peak at ~273 
nm,5 other matrix components absorb strongly in this same region, 

Figure 1. Red Bull samples used in this study.

 

Sample Flavor Measured Concentration 
(mg/8.4 fl oz) Deviation from Label Claim (%) 

Blue 83.18 + 40.64 3.98 
Coconut 94.65 + 51.08 18.31 
Green 78.73 + 14.25 -1.59 

Normal 174.67 + 45.98 118.33 
Peach 201.70 + 48.36 152.12 
Red 152.09 +  25.73 90.11 

Sugarfree 78.54 + 9.52 -1.82 
Summer 149.00 + 29.42 86.25 
Yellow 144.48 + 32.46 80.60 

 

 

Table 1: Calculated caffeine content of various Red Bull samples
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inflating the apparent absorbance and leading to an overestimation 
of caffeine concentration via the univariate calibration model. 
The greatest overestimations were observed in darker, more 
intensely colored variants such as Peach and Red, underscoring the 
pronounced contribution of their specific dye and additive profiles.

The inherent complexity of energy drinks, which function as 
multicomponent mixtures, precludes accurate univariate analysis. 
The raw absorbance spectra (Figure 2) confirm this complexity, 
with all variants showing intense, overlapping absorption bands 
in the 200–230 nm and 270–280 nm regions. The characteristic 
caffeine peak at ~273 nm is obscured by the concomitant absorp-
tion of synthetic colorants (e.g., Allura Red AC, Brilliant Blue 
FCF), preservatives like benzoic and sorbic acids, and flavor com-
pounds.6,16 This spectral overlap leads to a confounding matrix ef-
fect, where the measured absorbance is a composite signal. Conse-
quently, the calibration curve, which is specific to pure caffeine in 
solvent, fails to accurately reflect the caffeine concentration in the 
drink, a challenge also reported in the analysis of soft drinks and 
other fortified beverages.17 The most pronounced overestimations 
occurred in darker, more pigmented variants (Peach and Red), di-
rectly implicating their specific cocktail of high-intensity colorants 
as major interferents.

Given the limitations of univariate analysis, we treated the full 
UV-Vis spectrum (200-500 nm) as a unique chemical fingerprint 
for each variant. Although all samples shared a similar spectral 
shape, reflecting a common base formulation, systematic varia-
tions in absorbance intensity were evident (Figure 2). Peach and 
Red exhibited the highest overall absorption, while Blue and Sum-
mer showed the lowest, providing a visual basis for differentiation.
Principal component analysis (PCA) of this raw spectral data 
yielded a highly effective discrimination model. The first two 
principal components (PCs) captured 90.8% and 6.4% of the total 
spectral variance (Figure 3), indicating that the major differences 
between the drinks are largely contained in PC1. The scores plot 
showed partial overlap among flavors, reflecting broad composi-
tional similarities, but the distribution still suggests that PC1 is 
likely influenced by variations in the total concentration of strong 
UV-absorbing compounds, which are predominantly artificial dyes 
(e.g., Allura Red AC, Brilliant Blue FCF) given their high molar 
absorptivity. PC2 appears to capture more subtle variations, po-
tentially from other composition differences such as preservatives 
(e.g., benzoic acid) or flavor compounds. However, without fur-
ther targeted analysis, these assignments remain speculative and 

are based on the known composition of such beverages.10,18 This 
approach aligns with the growing use of spectroscopic fingerprint-
ing combined with PCA for the quality control of food and bever-
ages, such as juices and wines.19

Hierarchical cluster analysis (HCA) on the raw data produced 
a dendrogram that partially supported the PCA findings (Figure 
4). The algorithm grouped variants with spectral similarities, such 
as Blue with Summer and Coconut with Red, while the Sugarfree 
variant consistently appeared as the most distinct, likely due to the 
absence of sucrose and the presence of artificial sweeteners like 
aspartame and acesulfame K, which impart distinct UV charac-
teristics.20

To enhance spectral resolution and suppress broad-band 
baseline effects, first-derivative transformation was applied. This 

Figure 3: PCA plot of the different Red Bull samples. 

Figure 4. HCA dendrogram of the absorbance different Red Bull samples.Figure 2. Absorbance of different Red Bull samples.
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mathematical technique amplifies the visibility of shoulder peaks 
and sharp spectral features.7,21 As shown in Figure 5, the first-de-
rivative spectra revealed clearer features, particularly in the 250–
350 nm region, where the contributions of individual compounds 
become more discernible.

Principal Component Analysis of the first-derivative data 
yielded a model with different variance distribution (PC1 = 79.8%, 
PC2 = 11.6%) compared to the raw data (Figure 6). While the total 
variance explained by the first two PCs was lower, the separation 
between clusters improved, as Peach, Red, and Yellow appeared 
more distinct in the scores plot. The reduced contribution of PC1 
suggests that the dominant, broad-scale intensity differences (like-
ly from colorant concentration) were mitigated, allowing more 
subtle, shape-based spectral features to contribute significantly to 
the model.10 The unique position of the Sugarfree variant was fur-
ther reinforced, solidifying its status as an outlier.

Hierarchical Cluster Analysis on the first-derivative data (Fig-
ure 7) produced a dendrogram with new grouping patterns com-
pared to the raw data. Blue was now clustered with Coconut and 
Red, while Green grouped more closely with Peach and Yellow. 
These shifts reflect the refined measure of spectral similarity based 
on spectral shape rather than absolute intensity. The effectiveness 
of first-derivative preprocessing in improving classification mod-

els for complex mixtures is well documented in food science, as 
it minimizes baseline offsets and highlights the contributions of 
minor components13.

The second derivative transformation was applied to further 
sharpen spectral features by resolving hidden inflection points and 
emphasizing narrower peaks. The second-derivative spectra (Fig-
ure 8) amplified the fine structure, particularly around the caffeine 
peak region (~273 nm), potentially revealing contributions from 
other specific compounds like benzoic acid or individual colorants.
However, this enhancement came at a cost. The second derivative 
is inherently sensitive to high-frequency noise, which was 
amplified alongside the spectral signals.8 This effect is clearly 
reflected in the PCA model derived from the second-derivative 
data (Figure 9), where the explained variance was distributed 
much more evenly across numerous components (PC1 = 17.9%, 
PC2 = 13.1%). Unlike the raw data, no single dominant trend was 
observed, indicating that the dataset became more complex and 
noisy.9 Despite this, the second-derivative PCA provided unique 
insights, offering improved distinction for the Coconut and Green 
variants, which emerged as outliers not evident in the raw or first-
derivative models. This suggests that these two variants possess 
unique, sharp spectral features that are only highlighted when the 
broadest spectral patterns are suppressed.

The HCA dendrogram for the second-derivative data (Figure 

Figure 5: 1st derivatives absorbance of different Red Bull samples. 

Figure 6: PCA plot of the different Red Bull samples absorbance (1st derivative).

Figure 7: HCA dendrogram of the first derivative of absorbance of different Red 
Bull samples.

Figure 8: Second derivative absorbance of different Red Bull samples. 
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10) showed a markedly different clustering pattern compared to 
both raw and first-derivative results. While some expected clusters 
persisted, Blue, Red, and Sugarfree were grouped together, and 
Green separated as the most distinct variant. This demonstrates 
that the second derivative probes a different level of spectral infor-
mation. The increased sensitivity to noise can sometimes lead to 
less stable clustering in HCA; however, the emergence of unique 
groups can also reveal subtle formulation differences not detected 
by other methods, a phenomenon observed in other spectroscopic 
fingerprinting studies.14

Conclusion

This study demonstrates that direct UV-Vis quantification 
fails to accurately determine caffeine in Red Bull due to profound 
matrix effects, as evidenced by significant deviations from the 
manufacturer’s product labeling and high measurement variabil-
ity.   However, this limitation serves to highlight the strength of 
an alternative approach: using the full spectral fingerprint com-
bined with chemometrics for robust product discrimination.  Prin-
cipal component analysis (PCA) and hierarchical cluster analysis 
(HCA) of raw and derivative spectra successfully differentiated all 

nine variants, consistently identifying Sugarfree as an outlier and 
grouping others by formulation similarities. This approach estab-
lishes UV-Vis spectroscopy with PCA/HCA as a rapid, non-de-
structive, and effective method for the quality control and authen-
tication of energy drinks, moving beyond targeted quantification to 
holistic product fingerprinting.

A key limitation of this study is the use of averaged spectra for 
model development without a blind validation test. Future work 
should focus on building a robust classification model (e.g., using 
Linear Discriminant Analysis or SIMCA) with a larger sample set 
and validating its predictive ability by correctly identifying the 
flavor of unknown, single-shot spectra. This would be a crucial 
step towards implementing this technique in a practical quality 
control setting.  Ultimately, while techniques like HPLC remain 
the gold standard for precise quantification, the method presented 
here offers a complementary, rapid, and cost-effective tool for 
qualitative discrimination and brand authentication.
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