Problem 6
Prove or give a counterexample.
(a) Every oscillating sequence has a convergent subsequence.
(b) Every oscillating sequence diverges.
(c) Every divergent sequence oscillates.

Solution
According to the text (page 184), an oscillating sequence \((s_n) \) is a bounded sequence for which \(\lim \inf s_n < \lim \sup s_n \).

(a) With the above definition in mind we see that part a is trivially true, as any bounded sequence has a convergent subsequence.

(b) We note that if \((s_n) \) converges (say, to \(s \)), then all its subsequences converge (also, to \(s \)), so \(\lim \inf(s_n) = \lim \sup(s_n) \). Therefore, if \((s_n) \) oscillates, we know \(\lim \inf(s_n) < \lim \sup(s_n) \), and it follows that \((s_n) \) does not converge. That is, \((s_n) \) diverges. Therefore, part b is true as well.

(c) The sequence \((s_n) \) defined by \(s_n = n \) diverges to infinity, but does not oscillate, as a requirement for an oscillating series is that it be bounded. So if the term divergent, would allow for diverges to infinity, then, as stated, part c is false. But what if the intent is to disallow series that diverge to \(\pm \infty \)? In that case, part (c) is true, as we claim that a divergent (bounded) series has \(\lim \inf s_n < \lim \sup s_n \).

Proof of claim:
Suppose that \((s_n) \) is a divergent bounded series. The the contrapositive of the above claim is that, if \(\lim \inf s_n \geq \lim \sup s_n \), then \((s_n) \) converges. As it is impossible that \(\lim \inf s_n > \lim \sup s_n \), this reduces to showing that, if \(\lim \inf s_n = \lim \sup s_n \), then \((s_n) \) converges. We note that this statement is the same as exercise 19.9 on page 189. To simplify notation, let us say that \(\lim \inf s_n = \lim \sup s_n = s \). We claim that then \((s_n) \) converges to \(s \). Let \(\varepsilon > 0 \) be given. By Theorem 19.11 \(\exists N_1 \ni n > N_1 \Rightarrow s_n < s + \varepsilon \). By the extension to this theorem discussed in class (regarding \(\lim \inf \)), \(\exists N_2 \ni n > N_2 \Rightarrow s - \varepsilon < s_n \). Choose \(N = \max\{N_1, N_2\} \). If \(n > N \) then \(s - \varepsilon < s_n < s + \varepsilon \), or \(|s_n - s| < \varepsilon \).

終わりました