The Work of Vito Volterra (1860–1940)
See *The Calculus Gallery*, by William Dunham, pp. 170–182

Photos courtesy of http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Volterra.html

Vito Volterra: Early Career
Two Great Results (1881, at age 21!)

Vito Volterra: Mid Career

Vito Volterra: Later Years
Vito Volterra: Early Career

- Born in Ancona, Italy
Vito Volterra: Early Career

- Born in Ancona, Italy
- Raised in Florence
Vito Volterra: Early Career

- Born in Ancona, Italy
- Raised in Florence
- A true “Renaissance Man”
Vito Volterra: Early Career

- Ph.D. (Physics) at age 22

\[
\begin{align*}
\frac{dx}{dt} &= x(a - by) \\
\frac{dy}{dt} &= -y(c - dx)
\end{align*}
\]

- x: number of prey
- y: number of predators
- t: time
- a, b, c, and d are constants
Vito Volterra: Early Career

- Ph.D. (Physics) at age 22
- Published in Biology
 (predator-prey equations):
 \[
 \frac{dx}{dt} = x(a - by) \\
 \frac{dy}{dt} = -y(c - dx)
 \]
 \[x = \text{number of prey}\]
 \[y = \text{number of predators}\]
 \[t = \text{time}\]
 \[a, b, c, \text{ and } d \text{ are constants}\]
The Work of Vito Volterra (1860–1940)
See *The Calculus Gallery*, by William Dunham, pp. 170–182

Photos courtesy of http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Volterra.html

Vito Volterra: Early Career
Two Great Results (1881, at age 21!)
Vito Volterra: Mid Career
Vito Volterra: Later Years
Two Great Results (1881, at age 21!)

1. Constructed a function f whose derivative f' exists everywhere, but the (Riemann) integral $\int_a^b f'(x) \, dx$ does not exist.

Thus (for the Riemann integral), if one is to use the formula $\int_a^b f'(x) \, dx = f(b) - f(a)$, one must first be convinced that the (Riemann) integral of the derivative exists.

2. Proved that there cannot exist two pointwise discontinuous functions on the interval (a, b) for which the continuity points for one are the discontinuity points for the other, and vice versa.

Application: It is impossible for a function to be continuous on the rationals and discontinuous on the irrationals because the "ruler function" defined by $R(x) = \begin{cases} 0, & \text{if } x \text{ is irrational} \\ \frac{1}{q}, & \text{if } x = \frac{p}{q} \text{ in lowest terms} \end{cases}$ is continuous on the irrationals and discontinuous on the rationals.
Two Great Results (1881, at age 21!)

1. Constructed a function f whose derivative f' exists everywhere, but the (Riemann) integral $\int_a^b f'(x) \, dx$ does not exist. Thus (for the Riemann integral), if one is to use the formula $\int_a^b f'(x) \, dx = f(b) - f(a)$, one must first be convinced that the (Riemann) integral of the derivative exists.
Two Great Results (1881, at age 21!)

1. Constructed a function f whose derivative f' exists everywhere, but the (Riemann) integral $\int_a^b f'(x) \, dx$ does not exist. Thus (for the Riemann integral), if one is to use the formula $\int_a^b f'(x) \, dx = f(b) - f(a)$, one must first be convinced that the (Riemann) integral of the derivative exists.

2. Proved that there cannot exist two pointwise discontinuous functions on the interval (a, b) for which the continuity points for one are the discontinuity points for the other, and vice versa.
Two Great Results (1881, at age 21!)

1. Constructed a function f whose derivative f' exists everywhere, but the (Riemann) integral $\int_a^b f'(x) \, dx$ does not exist. Thus (for the Riemann integral), if one is to use the formula $\int_a^b f'(x) \, dx = f(b) - f(a)$, one must first be convinced that the (Riemann) integral of the derivative exists.

2. Proved that there cannot exist two pointwise discontinuous functions on the interval (a, b) for which the continuity points for one are the discontinuity points for the other, and vice versa.

Application: It is impossible for a function to be continuous on the rationals and discontinuous on the irrationals because the “ruler function” defined by $R(x) = \begin{cases} 0, & \text{if } x \text{ is irrational;} \\ \frac{1}{q}, & \text{if } x = \frac{p}{q} \text{ in lowest terms} \end{cases}$ is continuous on the irrationals and discontinuous on the rationals.
Corollary: There does not exist a continuous function \(g \) defined on the real numbers such that \(g(x) \) is irrational when \(x \) is rational and \(g(x) \) is rational when \(x \) is irrational.

Proof:
Suppose such a function \(g \) existed and consider \(G(x) = R(g(x)) \), where \(R \) is the ruler function. We claim (proof below) that the function \(G \) so defined would be continuous on the rationals and discontinuous on the irrationals. But Volterra proved that there can be no such function, so the supposition that the function \(g \) exists is incorrect.

Proof of Claim:
Corollary: There does not exist a continuous function g defined on the real numbers such that $g(x)$ is irrational when x is rational and $g(x)$ is rational when x is irrational.

Proof:
Suppose such a function g existed and consider $G(x) = R(g(x))$, where R is the ruler function. We claim (proof below) that the function G so defined would be continuous on the rationals and discontinuous on the irrationals. But Volterra proved that there can be no such function, so the supposition that the function g exists is incorrect.

Proof of Claim:
- Suppose that x_0 is rational. Then by supposition $g(x_0)$ is irrational. The ruler function is continuous on the irrationals and g is continuous everywhere, so the composition $G(x) = R(g(x))$ is continuous at $x = x_0$.

Corollary: There does not exist a continuous function g defined on the real numbers such that $g(x)$ is irrational when x is rational and $g(x)$ is rational when x is irrational.

Proof:
Suppose such a function g existed and consider $G(x) = R(g(x))$, where R is the ruler function. We claim (proof below) that the function G so defined would be continuous on the rationals and discontinuous on the irrationals. But Volterra proved that there can be no such function, so the supposition that the function g exists is incorrect.

Proof of Claim:

- **Suppose that** x_0 **is rational. Then by supposition** $g(x_0)$ **is irrational. The ruler function is continuous on the irrationals and** g **is continuous everywhere, so the composition** $G(x) = R(g(x))$ **is continuous at** $x = x_0$.

- **Suppose that** x_0 **is irrational and let** (x_n) **be a sequence of rational numbers that converges to** x_0. **Then, for all** n, **$g(x_n)$ is irrational, so** $R(g(x_n)) = 0$. **Thus,**
 \[
 \lim_{x_n \to x_0} G(x_n) = \lim_{x_n \to x_0} R(g(x_n)) = \lim_{x_n \to x_0} 0 = 0.
 \]

 However, x_0 is irrational, so $g(x_0)$ is some rational number, say $g(x_0) = \frac{p}{q}$ in lowest terms. Then $G(x_0) = R(g(x_0)) = R\left(\frac{p}{q}\right) = \frac{1}{q} \neq 0$.

 Therefore, G is discontinuous at x_0 because $0 = \lim_{x_n \to x_0} G(x_n) \neq G(x_0) = \frac{1}{q}$.

The Work of Vito Volterra (1860–1940)

See *The Calculus Gallery*, by William Dunham, pp. 170–182

Photos courtesy of http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Volterra.html

Vito Volterra: Early Career
Two Great Results (1881, at age 21!)

Vito Volterra: Mid Career

Vito Volterra: Later Years
Volterra publicly opposed Mussolini in the 1920s. In 1931 he refused to take a mandatory oath of loyalty to Mussolini (only 12 out of 1,250 professors refused).
Vito Volterra: Mid Career

- Volterra publicly opposed Mussolini in the 1920s. In 1931 he refused to take a mandatory oath of loyalty to Mussolini (only 12 out of 1,250 professors refused).
- This stance cost him his job!
Vito Volterra: Mid Career

- Volterra publicly opposed Mussolini in the 1920s. In 1931 he refused to take a mandatory oath of loyalty to Mussolini (only 12 out of 1,250 professors refused).
- This stance cost him his job!
- He lived abroad for most of the rest of his life.
According to Wikipedia Volterra was not a political radical, and would likely have opposed a leftist regime as well. Wikipedia cites a quotation of Volterra’s found on a postcard as an apt description of his political philosophy: “Empires die, but Euclid’s theorems keep their youth forever.”
The Work of Vito Volterra (1860–1940)
See *The Calculus Gallery*, by William Dunham, pp. 170–182

Photos courtesy of http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Volterra.html

Vito Volterra: Early Career
Two Great Results (1881, at age 21!)

Vito Volterra: Mid Career

Vito Volterra: Later Years
Volterra eventually received an honorary knighthood by Britain’s King George V.
Vito Volterra: Later Years

- Volterra eventually received an honorary knighthood by Britain’s King George V.
- Volterra reflected on the 1800s as “the century of the theory of functions.”